Search Results
Coatings manufactured using magnetron sputtering technology to protect against infrared radiation for use in firefighter helmets
., Hollstein, F. & Meinhardt, J. (2000). Investigation of PVD arc coatings on polyamide fabrics. Surf. Coat. Technol. 135, 75-81. DOI: 10.1016/S0257-8972(00)00917-8. 4. Wasa, K. & Hayakawa, S. (1992). Handbook of sputter deposition technology. Noyes, USA: Park Ridge. 5. Dobrzański, L.A. & Dobrzańska-Danikiewicz, A.D. (2011). Obróbka powierzchni materiałów inżynierskich (89-136). Open Access Library. International OCSCO World Press. http://www.openaccesslibrary.com/index.php?id=81 6. Kawate, M., Hashimoto, A.K. & Suzuki, T
High Pressure Synthesis versus Calcination – Different Approaches to Crystallization of Zirconium Dioxide
Literature Cited 1. Byrappa, K. & Adschiri, T. (2007). Hydrothermal technology for nanotechnology, Prog. Cryst. Growth Ch. 53, 117–166. DOI: 10.1016/j.pcrysgrow.2007.04.001. 2. Zhu, X.H. & Hang, Q.M. (2013). Microscopical and physical characterization of microwave and microwave-hydrothermal synthesis products, Micron 44, 21–44. DOI: 10.1016/j. micron.2012.06.005. 3. Riman, R.E., Suchanek, W.L. & Lencka, M.M. (2002). Hydrothermal crystallization of ceramics, Ann. Chim. Sci. Mat. 27 (6), 15–36. DOI: 10.1016/S0151-9107(02)90012-7. 4. Byrappa, K
Polish Journal of Chemical Technology
Processes and Technologies for the Recycling of Spent Fluorescent Lamps
References 1. Durao, W., Castro, C. & Windmöller, C. (2008). Mercury reduction studies to facilitate the thermal decontamination of phosphor powder residues from spent fluorescent lamps. Waste Management 28, 2311-2319. DOI: 10.1016/j.wasman.2007.10.011. 2. Chang, T., You, S., Yu, B. & Kong, H. (2007). The fate and management of high mercury-containing lamps from high technology industry. J. Hazard. Mater. 141, 784-792. DOI: 10.1016/j.hazmat.2006.07.045. 3. Tunsu, C., Retegan, T. & Ekberg, Ch. Sustainable
Monitoring and remediation technologies of organochlorine pesticides in drainage water
-2027. DOI: 10.1016/j.watres.2007.01.027. 7. Derbalah, A.S. (2009). Chemical remediation of carbofuran insecticide in aquatic system by advanced oxidation processes. J. Agric. Res. Kafr Elsheikh Univ. 35 (1), 308-327. 8. Derbalah, A.S.H. & Belal, E.B. (2008). Biodegradation kinetics of cymoxanil in Aquatic system. Chem. Ecol. 3, 169-180. DOI: 10.1080/02757540802032173. 9. Sangakkara, U.R. (2002). The Technology of Effective Microorganisms-Case Studies of Application’ Royal Agricultural College, Cirencester, UK Research
The application of RANS CFD for design of SNCR technology for a pulverized coal-fired boiler
the installations, fuel combustion sources and incineration and co-incineration equipment, DzU 2014, poz. 1546. [in Polish]. 4. Heck, R.M. (1999). Catalytic abatement of nitrogen oxides – stationary applications. Catal. Today. 53, 519–523. DOI: 10.1016/S0920-5861(99)00139-X. 5. Zamorowski, K. (2013). Aspects of the national power industry adaptation to nitric oxides emission standards – influence of applied technologies on boiler operation and on costs of flue gas denitrification. Energetyka 6, 490–497, [in Polish]. 6. Li, W.B., Yang, X.F., Chen, L
Preparations and production technologies of cleansing milks based on cenosphere obtained from flying ashes
-able Technologies, 625 - 629 (in Polish). Arct, J. (1994), Washing, cleaning and scouring in house-hold Part.3. Drugstore News 4, 25 - 27 (in Polish). Sulek, M.W., Klimaszewska, E. & Pytlas, K. (2008), Selected Physicochemical Properties of Cream Cleaners of Strongly Contamined Surfaces as Characteristics of the Quality Assessment Products, Polish Journal of Commodity Science 1, 71-101 (in Polish).
Monitoring of organophosphorus pesticides and remediation technologies of the frequently detected compound (chlorpyrifos) in drinking water
.A. (2010). Photocatalytic treatment of water soluble pesticide by advanced oxidation technologies using UV light and solar energy. Solar Energy , 84, 1157-1165. 7. Francisca, M.C., Vilar, V.J.P., Ferreira, Ana, F.C.C., Felipe, D.R.A. & Márcia, D., Sousa, M.A., Goncalves, C., Boaventura Rui, A.R. & Alpendurada, M.F. (2012). Treatment of a pesticide-containing wastewater using combined biological and solar-driven AOPs at pilot scale Chem. Eng. J. 209, 429-441. DOI: 0.1016/ j .cej.2012.08.009. 8. Derbalah, A.S., Nakatani, N. & Sakugawa, H
Synthesis and characterization of thiourea
thiourea from urea. Tianjin University, TianJin, China. 29–34. 9. Li, Z. (2005) Study on the new process of preparing thiourea from urea. Tianjin University, TianJin, China.7–8. 10. Xu, D. (2012) Preparation and application of substituted thiourea. Nanjing University of Science and Technology, Nanjing. 11. Ji, W. The Researeh for Novel Synthesis of Thiourea and ItS Use, Nanjing University of Technology, Nanjing. 2005, 2 12. Li, Z. (2005) Study on the new process of preparing thiourea from urea. Tianjin University, TianJin, China. 5–6. 13. Xu
Evaluation of ground pollution by hydrocarbons using Rock-Eval pyrolysis
hydrocarbon exploration, and soil contamination studies, Revue IFP 53(4), 421–437. DOI: 10.2516/ogst:1998036. 8. Behar, F., Beaumont V. & De B. Penteado, H.L. (2001). Rock – Eval 6 Technology: Performances and developments. Rev. IFP 56(2), 111–134. DOI: 10.2516/ogst:2001013. 9. Dahl, B., Bojesen-Koefoed, J., Holm, A., Justwan, H., Rasmussen, E. & Thomsen, E., (2004). A new approach to interpreting Rock-Eval S2 and TOC data for kerogen quality assessment. Org. Geochem. 35, 1461–1477. DOI: 10.1016/j.orggeochem.2004.07.003. 10. Więcław, D. (2016