Search Results

1 - 7 of 7 items :

  • "primary culture" x
  • Pharmacy, other x
Clear All
Induction of xenobiotic-metabolizing enzymes in hepatocytes by beta-naphthoflavone: Time-dependent changes in activities, protein and mRNA levels

-356; https://doi.org/10.1016/j.tiv.2009.05.021 10. R. Glockner, A. Lieder and A. Lupp, Determination of CYP activity in precision-cut liver slices: whether to use intact slices or slice homogenate, Anal. Bioanal. Chem. 392 (2008) 1167-1172; https://doi.org/10.1007/s00216-008-2238-y 11. M. Monshouwer, G. A. Van’t Klooster, S. M. Nijmeijer, R. F. Witkamp and A. S. van Miert, Characterization of cytochrome P450 isoenzymes in primary cultures of pig hepatocytes, Toxicol. In Vitro 12 (1998) 715-723. 12. M. N. Berry, G. J. Barritt

Open access
Effect of cerebrolysin on dopaminergic neurodegeneration of rat with oxidative stress induced by 3-nitropropionic acid

References 1. A. Rami, D. Ferger and J. Krieglstein, Blockade of calpain proteolytic activity rescues neurons from glutamate excitotoxicity, Neurosci. Res. 27 (1997) 93-97. 2. A. Szabó, A. Papp and L. Nagymajtényi, Effects of 3-nitropropionic acid in rats: general toxicity and functional neurotoxicity, Arh. Hig. Rada Toksikol. 56 (2005) 297-302. 3. M. Hartbauer, B. Hutter-Paie and G. Skofitsch, Antiapoptotic effects of the peptidergic drug cerebrolysin on primary cultures of embryonic chick cortical neurons, J

Open access
Immunomodulatory effects of inosine pranobex on cytokine production by human lymphocytes

IL-4 production in vivo and in vitro, Int. J. Immunopharmacol. 13 (1991) 1013-1018; DOI: 10.1016/0192-0561(91)90055-C. 13. S. Jiang and C. Dong, A complex issue on CD4+ T-cell subsets, Immunol. Rev. 252 (2013) 5-11; DOI: 10.1111/imr.12041. 14. S. McHugh, J. Deighton, I. Rifkin and P. Ewan, Kinetics and functional implications of Th1 and Th2 cytokine production following activation of peripheral blood mononuclear cells in primary culture, Eur. J. Immunol. 26 (1996) 1260-1265; DOI: 10.1002/eji.1830260612. 15. B

Open access
Optimization of process variables for phyllanthin extraction from Phyllanthus amarus leaves by supercritical fluid using a Box-Behnken experimental design followed by HPLC identification

species, J. Ethnopharmacol . 104 (2006) 79-86; DOI: 10.1016/j.jep.2005.08.048. 4. P. Padma and O. H. Setty, Protective effect of Phyllanthus fraternus against carbon tetrachloride- -induced mitochondrial dysfunction, Life Sci . 64 (1999) 2411-2417; DOI: 10.1016/S0024-3205(99) 00195-2. 5. H. Chirdchupunseree and P. Pramyothin, Protective activity of phyllanthin in ethanol-treated primary culture of rat hepatocytes, J. Ethnopharmacol . 128 (2010) 172-176; DOI: 10.1016/j.jep. 2010.01.003. 6. R. Krithika, R

Open access
Development and evaluation of coenzyme Q10 loaded solid lipid nanoparticle hydrogel for enhanced dermal delivery

drawback to the use of dichlorofluorescin in evaluation of reactive oxygen species, Biochem. Biophys. Res. Commun. 304 (2003) 619-624; DOI: 10.1016/S0006-291X(03)00641-7. 4. C. R. Murthy, K. V. Rama Rao, G. Bai and M. D. Norenberg, Ammonia-induced production of free radicals in primary cultures of rat astrocytes, J. Neurosci. Res. 66 (2001) 282-288; DOI: 10. 1002/jnr.1222. 5. S. Kumar, Free radicals and antioxidants: human and food system, Adv. Appl. Sci. Res. 2 (2011) 129-135. 6. G. R. Lenaz, Fato, G. Formiggini and

Open access
Role of nitric oxide synthase on brain GABA transaminase activity and GABA levels

: involvement of nitric oxide/NMDA pathways, Epilepsy Behav. 39 (2014) 42–47; https://doi.org/10.1016/j.yebeh.2014.07.013 12. Q. Wang, E. Mergia, D. Koesling and T. Mittmann, Nitric oxide/cGMP signaling via guanylyl cyclase isoform 1 modulates glutamate and GABA release in somatosensory cortex of mice, Neuroscience 30 (2017) 180–189; https://doi.org/10.1016/j.neuroscience.2017.07.063 13. J. P. Pin, B. J. Van-Vliet and J. Bockaert, NMDA-and kainate-evoked GABA release from striatal neurons differentiated in primary culture: differential blocking by

Open access
Metabolic stability and its role in the discovery of new chemical entities

–301. 57. J. Sahi, S. Grepper and C. Smith. Hepatocytes as a tool in drug metabolism, transport and safety evaluations in drug discovery, Curr. Drug Discov. Technol . 7 (2010) 188–198. 58. M. J. Gómez-Lechón, M. T. Donato, J. V. Castell and R. Jover, Human hepatocytes in primary culture: the choice to investigate drug metabolism in man, Curr. Drug Metab. 5 (2004) 443–462. 59. A. P. Li, In vitro human hepatocyte-based experimental systems for the evaluation of human drug metabolism, drug-drug interactions, and drug toxicity in drug development, Curr

Open access