Search Results

1 - 5 of 5 items :

  • "nanoparticles" x
  • Microbiology, Virology and Infection Epidemiology x
Clear All
Impact of foliar application of copper sulphate and copper nanoparticles on some morpho-physiological traits and essential oil composition of peppermint (Mentha piperita L.)

their roles in sustainable agriculture Intl J Agri Crop Sci 2013; 5(19):2229-2232. 14. Pozveh ZT, Roya R, Fatemeh R. Changes occurring in canola ( Brassica napus L.) in response silver nanoparticles treatment under in vitro conditions. Indian J Fundam Appl Life Sci 2014; 4:797-807. 15. Khater, MS. Magnetite-nanoparticles effects on growth and essential oil of peppermint. Curr Sci Int 2015; 4(2):140-144. 16. Bouazizi H, Jouili H, Geitmann AEl, Ferjani E. Copper toxicity in expanding leaves of Phaseolus vulgaris L. antioxidant enzyme response and

Open access
Antimicrobial activity of four essential oils extracted from plants commonly used in traditional medicine against some clinical strains

essential oil, nisin, and their combination to control Listeria monocytogenes inoculated in minced fish meat. Food Control 2014; 35(1):177-183. 9. Banerjee P, Satapathy M, Mukhopahayay A, Das P. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Biores Bioprocess 2014; 1:3. doi: http://dx.doi.org/10.1186/s40643-014-0003-y 10. Jagtap U B, Bapat V A. Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed

Open access
Impact of Curcuma longa extract on the expression level of brain transporters in in vivo model

popular herbs improving mental abilities on the transcriptional level of brain transporters. Acta Pharm 2014; 64(2):223-32. doi: http://dx.doi.org/10.2478/acph-2014-0020 18. Urquhart BL, Kim RB. Blood-brain barrier transporters and response to CNS-active drugs. Eur J Clin Pharmacol 2009; 65(11):1063-70. doi: http://dx.doi.org/10.1007/s00228-009-0714-8 19. Patel M, Souto EB, Singh KK. Advances in brain drug targeting and delivery: limitations and challenges of solid lipid nanoparticles. Expert Opin Drug Deliv 2013; 10(7):889-905. doi: http://dx.doi.org/10

Open access
Expression of genes modulated by epigallocatechin-3-gallate in breast cancer cells

(6):632-644. 11. Stefaniak A, Sytykiewicz H, Czerniewicz P, Leszczyński B. Catechin-like antioxidative potential of selected tea products. Herba Pol 2012; 58(2):17-25. 12. Dube A, Nicolazzo JA, Larson I. Chitosan nanoparticles enhance the intestinal absorption of the green tea catechins (+)-catechin and (−)-epigallocatechin gallate. Eur J Pharma Sci 2010; 41(2):219-225. doi: http://dx.doi.org/10.1016/j.ejps.2010.06.010 13. Stuart EC, Scandlyn MJ, Rosengren RJ. Role of epigallocatechin gallate (EGCG) in the treatment of breast and prostate cancer. Life Sci 2006; 79

Open access
Role of SR-BI in atherosclerosis, malignancies, and infectious diseases

., Ouimet M., Kim Y., et al., HDLmimetic PLGA nanoparticle to target atherosclerosis plaque macrophages, Bioconjug. Chem., 2015, 26, 443-451, 10.1021/bc500517k Sanchez-Gaytan B.L. Fay F. Lobatto M.E. Tang J. Ouimet M. Kim Y. HDLmimetic PLGA nanoparticle to target atherosclerosis plaque macrophages Bioconjug. Chem. 2015 26 443 451 10.1021/bc500517k [10] Hu Y.W., Ma X., Huang J.L., Mao X.-R., Yang J.-Y., Zhao J.-Y., et al., Dihydrocapsaicin attenuates plaque formation through a PPAR gamma/LXR alpha pathway in apoE mice fed a high-fat/high-cholesterol diet, PLoS ONE

Open access