Search Results

1 - 10 of 153 items :

  • "nanoparticles" x
  • Process Engineering x
Clear All
Reduced graphene oxide and inorganic nanoparticles composites – synthesis and characterization

super-hydrophobicity. Nano Res . 7, 418–433. DOI: 10.1007/s12274-014-0408-0. 8. Muszynski, R., Seger, B. & Kamat, P.V. (2008). Decorating Graphene Sheets with Gold Nanoparticles. J. Phys. Chem. C 112, 5263–5266. DOI: 10.1021/jp800977b. 9. Zhu, J., Zhu, T., Zhou, X, Zhang, Y., Lou, X.W., Chen, X., Chen, H., Zhang, H., Hng, H.H., Ma, J. &Yan, Q. (2011). Facile synthesis of metal oxide/reduced graphene oxide hybrids with high lithium storage capacity and stable cyclability. Nanoscale 3, 1084–1089. DOI: 10.1039/C0NR00744G. 10. Ling, Q., Yang, M., Li

Open access
Foams Stabilized with Nanoparticles for Gas Well Deliquification

solid particles. Current Opinion in Colloid & Interface Science 13, 134–140. DOI: 10.1016/j.cocis.2007.11.009. 10. Dong, X., Xu, J., Cao, C., Sun, D. & Jiang, X. (2010). Aqueous foam stabilized by hydrophobically modified silica particles and liquid paraffin droplets. Colloids and Surfaces A: Physicochem. Eng. Aspects 353, 181–188. DOI: 10.1016/j. colsurfa.2009.11.010. 11. Hunter, T., Wanless, E., Jameson, G. &. Pugh, R. (2009). Non-ionic surfactant interactions with hydrophobic nanoparticles: Impact on foam stability. Colloids and Surfaces A: Physicochem. Eng

Open access
Controllable preparation of highly active horseradish peroxidase-gold nanoparticle bionanoconjugate

References 1. Xiao, Y., Patolsky, F., Katz, E. , Hainfeld, J.F., & Willner, I. (2003). Plugging into enzymes: nanowiring of redox enzymes by a gold nanoparticle, Science, 299, 1877-1881. DOI: 10.1126/science.1080664. 2. Liu, T., Tang, J., & Jiang, L. (2004). The enhancement effect of gold nanoparticles as a surface modifier on DNA sensor sensitivity, Biochemical and Biophysical Research Communications, 313, 3-7. DOI: 10.1016/j. bbrc.2003.11.098. 3. Cheng, Y., Pun, C., Tsai, C., & Chen, P. (2005). An

Open access
Graphene hydrogels with embedded metal nanoparticles as efficient catalysts in 4-nitrophenol reduction and methylene blue decolorization

LITERATURE CITED 1. Sheldon, R.A. & van Bekkum, H. (Eds.) Fine Chemicals through Heterogeneous Catalysis. Wiley-VCH 2001. 2. Mitsudomea, T. & Kaneda, K. (2013). Gold nanoparticle catalysts for selective hydrogenations. Green Chem. 15, 2636–2654. DOI: 10.1039/C3GC41360H. 3. Zhao, P., Feng, X., Huang, D., Yang, G. & Astruc, D. (2015) Basic concepts and recent advances in nitrophenol reduction by gold - and other transition metal nanoparticles. Coord. Chem. Rev. 287, 114–136. DOI:10.1016/j.ccr.2015.01.002. 4. Santos, K. de O., Elias, W

Open access
Photocatalytic degradation of malachite green dye using doped and undoped ZnS nanoparticles

aqueous. J. Hazard. Mater. 141, 581-590. DOI: 10.1016/j.jhazmat.2006.07.035. Hachem, C., Bocquillon, F., Zahraa, O. & Bouchy, M. (2001). Decolourization of textile industry wastewater by the photocatalytic degradation process. Dyes Pigments. 49, 117-125. Barjasteh-Moghaddam, M. & Habibi-Yangjeh, A. (2011). Effect of operational parameters on photodegradation of methylene blue on ZnS nanoparticles prepared in presence of an ionic liquid as a highly efficient photocatalyst. J. Iran. Chem. Soc. 8, S169-S175

Open access
Investigating the antibacterial potential of agarose nanoparticles synthesized by nanoprecipitation technology

LITERATURE CITED 1. Ansari, S.A. & Husain, Q. (2012). Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnol. Adv. 30(3), 512–523. DOI: 10.1016/j.biotechadv.2011.09.005. 2. Chibber, S., Ansari, S.A. & Satar, R. (2013). New vision to CuO, ZnO, and TiO 2 nanoparticles: their outcome and effects. J. Nan. Res. 15(4), 1–13. DOI: 10.1007/s11051-013-1492-x. 3. Rao, J.P. & Geckeler, K.E. (2011). Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci. 36(7), 887–913. DOI: 10.1016/j

Open access
Green synthesis, characterization and antibacterial activities of silver nanoparticles from strawberry fruit extract

LITERATURE CITED 1. Chowdhury, I.H., Ghosh, S., Roy, M. & Naskar, M.K. (2015). Green synthesis of water-dispersible silver nanoparticles at room temperature using green carambola (star fruit) extract. J. Sol–Gel Sci. Techno l., 73, 199–207. DOI: 10.1007/s10971-014-3515-1. 2. Ravi, S.S., Christena, L.R., SaiSubramanian, N. & Anthony, S.P. (2013). Green synthesized silver nanoparticles for selective colorimetric sensing of Hg 2+ in aqueous solution at wide pH range. Analyst . 138, 4370–4377. DOI: 10.1039/c3an00320e. 3. Li, L., Zhou, G., Cai, J

Open access
Silver nanoparticles deposited on calcium hydrogenphosphate – silver phosphate matrix; biological activity of the composite

LITERATURE CITED 1. Li, W.R., Xie, X.B., Shi, Q.S., Zeng, H.Y., Ou-Yang, Y.S. & Chen, Y.B. (2010).Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol . 85, 1115–1122. DOI: 10.1007/s00253-009-2159-5. 2. Lubick, N. (2008). Nanosilver toxicity: ions, nanoparticles—or both? Environ. Sci. Technol . 42, 8617–8617. DOI: 10.1021/es8026314. 3. Leung, B.O., Jalilehvand, F., Mah, V., Parvez, M. & Wu, Q. (2013). Silver(I) Complex Formation with Cysteine, Penicillamine, and Glutathione. Inorg. Chem

Open access
Simulation and control of nanoparticle size distribution in a high temperature reactor

References Friedlander, S. K. Smoke. (1977). Dust, and Haze: Fundamentals of Aerosol Behaviour, New York: Wiley. Kalani, A. & Christofides, P. D. (2002). Estimation and Control of Size Distribution in Aerosol Processes with Simultaneous Reaction, Nucleation, Condensation and Coagulation. Computer and Chemical Engineering, 26(7-8), 1153-1169. DOI: 10.1016/S0098-1354(02)00032-7. Goodson, M & Kraft, M. (2002). An Efficient Stochastic Algorithm for Simulating Nano-particle Dynamics

Open access
Acrylic Pressure-Sensitive Adhesives Containing SiO2 Nanoparticles

References 1. Imerito, T. (2005). Nanotechnology building from the bottom and building the bottom line. JOM 57 (12), 18-23. DOI: 10.1007/s11837-005-0177-z. 2. Murad, D.S. (2002). It`s a small world after all. Adhesives Age , October, 40-44. 3. Frisch, F. (2003). Nanotechnology gives a boost to adhesive technology. Adhäsion 4 (47), 16-19. 4. Krüger, G. (2006). Nanoparticles of SiO 2 , ZrO 2 and BaSO 4 in Acrylate Dispersions. Coating 3, 113-115. 5. Sprenger, S

Open access