Search Results

1 - 5 of 5 items :

  • "nanoparticles" x
  • Biomedical Electronics x
Clear All
Biomass measurement of living Lumbriculus variegatus with impedance spectroscopy

potential applications Bioresour Technol 2010 101 2 804 – 811 http://dx.doi.org/10.1016/j.biortech.2009.08.060 23 Hartmann NB, Legros S, Von der Kammer F, Hofmann T, Baun A. The potential of TiO2 nanoparticles as carriers for cadmium uptake in Lumbriculus variegatus and Daphnia magna. Aquat Toxicol. 2012;118-119:1–8. http://dx.doi.org/10.1016/j.aquatox.2012.03.008 10.1016/j.aquatox.2012.03.008 22494961 Hartmann NB Legros S Von der Kammer F Hofmann T Baun A The potential of TiO2 nanoparticles as carriers for cadmium uptake in Lumbriculus

Open access
Investigating the quasi-oscillatory behavior of electrical parameters with the concentration of D-glucose in aqueous solution

properties of glucose in bulk aqueous solutions: Influence of electrode polarization and modelling Biosensors and Bioelectronics 2011 26 2347 – 2353 http://dx.doi.org/10.1016/j.bios.2010.10.009 5 Zhou YG, Yang S, Qian QY, Xia XH. Gold nanoparticles integrated in a nanotube array for electrochemical detection of glucose. Electrochem. Commun. 2009; 11: 216–219. http://dx.doi.org/10.1016/j.elecom.2008.11.010 10.1016/j.elecom.2008.11.010 Zhou YG Yang S Qian QY Xia XH Gold nanoparticles integrated in a nanotube array for electrochemical detection

Open access
A LabVIEW-based electrical bioimpedance spectroscopic data interpreter (LEBISDI) for biological tissue impedance analysis and equivalent circuit modelling

of Microchannel-Nanochannel Interface Devices. Phys. Rev. Letters. 2013; 110: 204504. dx.doi.org/10.1103/PhysRevLett.110.204504 10.1103/PhysRevLett.110.204504 Schiffbauer J Park S Yossifon G Electrical Impedance Spectroscopy of Microchannel-Nanochannel Interface Devices Phys. Rev. Letters 2013 110 204504 dx.doi.org/10.1103/PhysRevLett.110.204504 59 Song J, Bazant MZ. Effects of Nanoparticle Geometry and Size Distribution on Diffusion Impedance of Battery Electrodes. J. Electrochem. Soc. 2013; 160(1): A15-A24. dx.doi.org/10

Open access
A short tutorial contribution to impedance and AC-electrokinetic characterization and manipulation of cells and media: Are electric methods more versatile than acoustic and laser methods?

-channel screening and physiology. Nat. Rev. Drug Discov. 2008, 7: 358-368. http://dx.doi.org/10.1038/nrd2552 18356919 10.1038/nrd2552 Dunlop J Bowlby M Peri R Vasilyev D Arias R High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology Nat. Rev. Drug Discov 2008 7 358 – 368 http://dx.doi.org/10.1038/nrd2552 Dürr M, Kentsch J, Müller T, Schnelle T, Stelzle M. Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis. Electrophoresis 2003, 24: 722–731. http

Open access
Applications of bioimpedance measurement techniques in tissue engineering

IEEE Transactions on Nanobioscience 2004 3 4 243 50 https://doi.org/10.1109/TNB.2004.837901 170 Vorlicek J, Vrba J. Coaxial Probe for Measuring Complex Permittivity of Biological Tissues. Radioterapie. 2009:59. Vorlicek J Vrba J Coaxial Probe for Measuring Complex Permittivity of Biological Tissues Radioterapie 2009 59 171 Frese J, Hrdlicka L, Mertens ME, Rongen L, Koch S, Schuster P, et al. Non-invasive Imaging of Tissue-Engineered Vascular Endothelium with Iron Oxide Nanoparticles. Biomed Tech. 2012;57. https://doi.org/10.1515/bmt-2012

Open access