Preparation of iron oxide nanocatalysts and application in the liquid phase oxidation of benzene
References 1. Wu, S., Sun, A., Zhai, F., Wang, J., Xu, W., Zhang, Q. & Volinsky, A.A. (2011). Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mat. Lett. 65, 1882-1884. DOI: 10.1016/j.matlet.2011.03.065. 2. Rafi ee, H.R., Feyzi, M., Jafari, F. & Safari, B. (2013). Preparation and characterization of promoted Fe-V/SiO2 nanocatalysts for oxidation of alcohols. J. Chem. 2013, 1-10. DOI: 10.1155/2013/412308. 3. Skandan, G. & Singhal, A. (2006). Perspectives on the science
Nanosilver: A Catalyst in Enzymatic Hydrolysis of Starch
References 1. Kalidindi, S.B. & Jagirdar, B.R. (2012). Nanocatalysis and prospect of green chemistry. ChemSusChem. 5, 65-75. DOI: 10.1002/cssc.201100377. 2. Molga, E. & Falkowska, M. (2012). Nanocatalysts - characterization and applications (In Polish). III Polish Symposium „Multiphase and Multifunctional Reactors for Chemical and Environmental Processes”, 10-12 October 2012 (pp. 137-142). Warsaw-Serock, Poland, ISBN 978-83-906658-9-4. 3. Cong, H. & Porco, A.J.Jr. (2012). Chemical Synthesis of Complex Molecules
Cold plasma in the nanotechnology of catalysts
Cold plasma in the nanotechnology of catalysts
In the paper the preparation of catalysts with the use of cold plasmas is discussed. A special attention is focused on nanocatalysts. In general, there are three main trends in this field: (1) plasma enhanced preparation of "classical" catalysts, (2) plasma sputtering of catalytically active compounds, especially metal and metal oxide nanoparticles, and (3) plasma-enhanced metal-organic chemical vapor deposition (PEMOCVD) of very thin metal and metal oxide films with specific nanostructure. It is shown that the cold plasma techniques are very effective methods for designing the nanocatalysts with distinct and tunable chemical activity, specificity and selectivity. Finally, our preliminary investigations concerning CoOX catalytic films fabricated by the PEMOCVD method are presented.
Ethanol oxidation reaction at Pd-modified nickel foam obtained by PVD method
References 1. Suo, Y. & Hsing, I.M. (2011). Highly active rhodium/carbon nanocatalysts for ethanol oxidation in alkaline medium. J. Power Sources 196, 7945-7950. DOI: 10.1016/j.jpowsour.2011.05.048. 2. Song, S.Q., Zhou, W.J., Zhou, Z.H., Jiang, L.H., Sun, G.Q., Xin, Q., Leontidis, V., Kontou, S. & Tsiakaras, P. (2005). Direct ethanol PEM fuel cells: The case of platinum based anodes. Int. J. Hydrogen Energy 30, 995-1001. DOI: 10.1016/j. ijhydene.2004.11.006. 3. Spinace, E.V., Linardi, M. & Neto, A.O. (2005). Co
Heterogeneous photocatalytic removal and reaction kinetics of Rhodamine-B dye with Au loaded TiO2 nanohybrid catalysts
nanotubes composites. J. Hazard. Mater. 139, 310-315. DOI: 10.1016/j.jhazmat.2006.06.035. Li, J. & Zeng, H. C. (2006). Preparation of Monodisperse Au/TiO 2 Nanocatalysts via Self-Assembly. Chem. Mater. 18(18), 4270-4277. DOI: 10.1021/cm060362r. Li, H., Bian, Z., Zhu, J., Huo, Y., Li, H. & Lu, Y. (2007). Mesoporous Au/TiO 2 Nanocomposites with Enhanced Photocatalytic Activity. J. Am. Chem. Soc. 129(15), 4538-4539. DOI: 10.1021/ja069113u. Jain, R., Mathur, M., Sikarwar, S. & Mittal, A
Barium oxide as a modifier to stabilize the γ-Al2O3 structure
, S., Rasoolzadeh, M. & Zolfaghari, R. (2014). Synthesize and Investigation of the Catalytic Behavior of Ir/γ-Al 2 O 3 Nanocatalyst. Adv. Mater. Res. 829. 163–167. DOI: 10.4028/ www.scientific.net/AMR.829.163 . 15. Kwak, J.H., Hu, J., Mei, D., Yi, C.W., Kim, D.H., Peden, C.H.F., Allard, L.F. & Szanyi, J. (2009). Coordinatively Un-saturated Al 3+ Centers as Binding Sites for Active Catalyst Phases of Platinum on γ-Al 2 O 3 . In Science 1670–1673. DOI: 10.1126/science.1176745. 16. Chen, F.R., Davis, J.G. & Fripiat, J.J. (1992). Aluminum Coordination and
A facile and effective method for preparation of 2.5-furandicarboxylic acid via hydrogen peroxide direct oxidation of 5-hydroxymethylfurfural
References 1. Lichtenthaler, F.W. & Peters, S. (2004). Carbohydrates as green raw materials for the chemical industry. Comptes. Rendus. Chimie. 7, 65-90. DOI: 10.1016/j.crci.2004.02.002. 2. Siankevich, S., Savoglidis, G., Fei, Z., Laurenczy, G., Alexander, DTL. & Yan, N., et al. (2014). A novel platinum nanocatalyst for the oxidation of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic acid under mild conditions. J. Catal. 315, 67-74. DOI: 10.1016/j.jcat.2014.04.011. 3. Corma, A., Iborra, S. & Velty, A. (2007
Platinum dissolution and ethanol oxidation reaction on Pt-activated nickel foam in sodium hydroxide solution
.jelechem.2015.03.024. 3. Pierozynski, B. (2012). On the Ethanol electrooxidation reaction on catalytic surfaces of Pt in 0.1 M NaOH. Int. J. Electrochem. Sci. 7, 4261–4271. 4. Dutta, A., Mahapatra, S.S. & Datta, J. (2011). High performance PtPdAu nano-catalyst for ethanol oxidation in alkaline media for fuel cell applications. Int. J. Hydrogen Energy 36, 14898–14906. DOI: 10.1016/j.ijhydene.2011.02.101. 5. Dominguez-Crespo, M.A., Torres-Huerta, A.M., Brachetti-Sibaja, B. & Flores-Vela, A. (2011). Electrochemical performance of Ni–RE (RE = rare earth) as
Ionic [Ru] complex with recyclability by electro-adsorption for efficient catalytic transfer hydrogenation of aryl ketones
–4655. DOI: 10.1021/cr9003924. 14. Polshettiwar, V., Luque, R., Fihri, A., Zhu, H., Bouhrara, M. & Basset, J.M. (2011). Magnetically recoverable nano-catalysts. Chem.Rev. 111, 3036–3075. DOI: 10.1021/cr100230z. 15. Fernandez, F.E., Puerta, M.C. & Valerga, P. (2011). Half-sandwich Ruthenium(II) picolyl-NHC complexes: synthesis, characterization, and catalytic activity in transfer hydrogenation reactions. Organometallics 30, 5793–5802. DOI: 10.1021/om200665f. 16. Pan, S.G., Matsuo, Y., Endo, K. & Shibata, T. (2012). Cationic iridium
Treatment of petroleum refinery effluent using ultrasonic irradiation
References 1. Bharati, R. & Suresh, S. (2017). Biosynthesis of ZnO/ SiO2 nanocatalyst with palash leaves’ powder for treatment of petroleum refinery effluent. Resource-Efficient Technol. 3 (4), 528-541. DOI: 10.1016/j.reffit.2017.08.004. 2. Chen, C., Wei, L., Guo, X., Guo, S. & Yan, G. (2014). Investigation of heavy oil refinery wastewater treatment by integrated ozone and activated carbon-supported manganese oxides. Fuel Proc. Technol. 124, 165-173. DOI: 10.1016/j.fuproc.2014.02.024. 3. Chen, C., Yu, J., Yoza