Search Results

1 - 3 of 3 items :

  • "molecular typing" x
  • Biochemistry x
Clear All
Application of Genomics in Clinical Oncology

Application of Genomics in Clinical Oncology

Genomics is a comprehensive study of the whole genome, genetic products, and their interactions. Human genome project has identified around 25,000-30,000 genes, and prevailing presence in tumor pathogenesis, high number of mutations, epigenetic changes, and other gene disorders have been identified. Microarrays technology is used for the analysis of these changes. Postgenome age has begun, and the initial results ensure the improvement of molecular tumor diagnostics and the making of a new taxonomic tumor classification, as well as the improvement, optimization and individualization of anti-tumor therapy. First genomic classifications have been made of leukemias, non-Hodgkin lymphoma, and many solid tumors. For example, 4 molecular types of breast carcinoma, three types of diffuse B cell lymphoma, two types of chromophobic renal carcinoma have been identified. Also, gene structures for favorable and unfavorable outcome in leukemia, breast cancer, prostate, bronchi, and other tumors have been identified. It is absolutely possible to diagnose the primary outcome of tumors with which standard tumor position may not be proved using standard diagnostic tools. Pharmacogenomic profiles have ensured better definition of interindividual differences during therapy using antineoplastic drugs and the decrease of their toxicity, as well as individual treatment approach and patient selection with which favorable clinical outcome is expected. Pharmacogenomics has impacted the accelerated development of target drugs, which have showed to be useful in practice. New genomic markers mtDNA, meDNA, and miRNA have been identified, which, with great certainty, help the detection and diagnostics of carcinoma. In the future, functional genomics in clinical oncology provides to gain knowledge about tumor pathogenesis; it will improve diagnostics and prognosis, and open up new therapeutic options.

Open access
Expanding PVL positive MRSA healthcare-associated infections outbreak in a newborns unit, caused by hospital hygiene shortcomings

spa type MRSA strains evolving in a Romanian newborns unit in 2010. Rom Rev Lab Med. 2011 Jun;Suppl.19 (2/4):S81-2. 64. Franco A, Hasman H, Iurescia M, Lorenzetti R, Stegger M, Pantosti A, et al. Molecular characterization of spa type t127, sequence type 1 methicillin-resistant Staphylococcus aureus from pigs. J Antimicrob Chemother. 2011 Jun;66(6):1231-5. DOI: 10.1093/jac/dkr115 65. Monecke S, Muller E, Dorneanu OS, Vremeră T, Ehricht R. Molecular Typing of MRSA and of Clinical Staphylococcus aureus Isolates from Iasi, Romania. PLoS ONE. 2014 May;9(5):e

Open access
Antibiotic susceptibility and resistance profiles of Romanian Clostridioides difficile isolates

antibiotic consumption. J Gastrointestin Liver Dis. 2014b;23(3):342-3. 27. Florea D, Huhulescu S, Indra A, Badicut I, Rafila A, Otelea D, et al. PCR coupled with mass-spectrometry for detection of Clostridium difficile virulence markers during the emergence of ribotype 027 in Bucharest area. Rev Romana Med Lab. 2015;23(4):449-55. DOI:10.1515/rrlm-2015-0044 28. Macovei IS, Lemeni D, Usein CR, Șerban R, Niculcea A, Popescu GA, et al. The use of PCR Ribotyping for molecular typing of clinically significant Clostridium difficile Romanian

Open access