Search Results

1 - 10 of 10 items :

  • "magnetic susceptibility" x
  • Life Sciences x
Clear All
Contents of Potentially Toxic Metals and Magnetic Susceptibility of Soils Along a Rural – Urban – Rural Gradient in Bratislava City (Slovakia)

efčík P. 1999. Geochemical atlas of Slovak Republic. Part V – Soils. Soil Science and Conservation Research Institute, Bratislava. Č urlík J. & J urkovič Ľ. 2012. Pedogeochémia. Univerzita Komenského v Bratislave, Bratislava, 228 p. D’ emilio M., C hianese D., C oppola R., M acchiato M. & R agosta M. 2007. Magnetic susceptibility measurements as proxy method to monitor soil pollution: Development of experimental protocols for field survey. Environ. Monitor. Assess. 125: 137-146. Ď urža O. 1999. Heavy metals contamination and magnetic

Open access
Application Of Magnetic Susceptibility of Soils for Identification of Potential Sources of Secondary Dust Emmision in Urban Parks

-42. MARCINEK J., KOMISAREK J. (red.) 2011. Systematyka gleb Polski. Rocz. Glebozn. 62, 3: ss. 193. MATYSEK D., RACLAVSKA H., RACLAVSKY K. 2008. Cor­relation between magnetic susceptibility and heavy metal con­centrations in forest soils of the Eastern Czech Republic. Jo­urnal of Environ. and Engineering Geoph. 13, 1: 13-26. NOWAK D.J., CRANE D.E., STEVENS J.C. 2006. Air pollu­tion removal by urban trees and shrubs in the United States. Urban Forestry and Urban Greening 4, 3-4: 11S-123. SCHMIDT A., YARNOLD R., HILL M

Open access
Impact of noise barriers on the dispersal of solid pollutants from car emissions and their deposition in soil

.M., Markowski G.R., Cass G.R., 1991. Chemicalcomposition of emissions from urban sources of fine organic aerosol. Environmental Science and Technology 25: 744-759 Hjortenkrans D.S.T., Bergbäck B.G., Häggerud A.V., 2007. Metal emissions from brake linings and tires: case studies of Stockholm, Sweden 1995/1998 and 2005. Environmental Science and Technology 41(15): 5224-5230. Hoffmann V., Knab M., Appel E., 1999. Magnetic susceptibility mapping of roadside pollution. Journal of Geochemical Exploration 66(1-2): 313-326. Hooda P

Open access
Redetermination of Zero-Field Splitting in [Co(qu)2Br2] and [Ni(PPh3)2Cl2] Complexes

Abstract

A mononuclear CoII complex, [Co(qu)2Br2], and NiII complex, [Ni(PPh3)2Cl2], (qu = quinoline, PPh3 = triphenylphosphine) have been reinvestigated. Their crystal and molecular structures are reported along with IR and UV-Vis spectra. Magnetism of both complexes has been studied by using the DC SQUID magnetometry. These complexes exhibit a moderate magnetic anisotropy expressed by zero-field splitting parameter D. The D-value is positive for both complexes with D/hc = +5.94 cm−1 and D/hc = +12.76 cm−1, that is also confirmed by ab initio calculations.

Open access
Magnetic response of bovine spleen

Abstract

Bovine spleen has been used as a sample for deep magnetochemical investigation. Temperature dependence of the magnetic susceptibility and field dependence of the magnetization reveal a paramagnetic behaviour that violates the Curie law. The zero-field cooled magnetization and field cooled magnetization experiments show the bifurcation point at ca T C = 20 K and the blocking temperature T B = 10 K confirming a dominating portion of ferritin along with the organic tissue. There is a remnant magnetization at temperature below 20 K and the search for the magnetic hysteresis was positive.

Open access
Magnetostructural Relationships For Fe(III) Spin Crossover Complexes

Abstract

Structural data for fifteen complexes of Fe(III) of a general formula [FeL5X], with pentadentate Schiff-base ligands L5 and unidentate coligands X, were subjected to a statistical analysis. The multivariate methods such as Pearson correlation, cluster analysis and principal component analysis split the data into two clusters depending upon the low-spin and/or high-spin state of the complex at the temperature of the X-ray experiment. Some of these complexes exhibit a thermally induced spin crossover. The numerical analysis of the magnetic susceptibility and magnetization data for an enlarged set of Fe(III) spin crossover systems yields the enthalpy ΔH and entropy ΔS of the transition along with the transition temperature T 1/2 and the solid state cooperativeness. The thermodynamic data show a mutual relationship manifesting itself by linear ΔS vs ΔH and T 1/2 vs ΔH correlations.

Open access
Utilization of the Spin Symmetry in Fitting the Magnetic Data lor Large Exchange Clusters

Abstract

The Heisenberg Hamiltonian appropriate to exchange clusters commutes with the square of the total spin ant its third component. Therefore in studying the exchange coupled clusters of medium/high nuclearity the spin quantum number S can be utilized in factoring of large interaction matrices (dimension of which is 104 - 105). Then the blocks of much lower size can be diagonalized using the desktop computers. To this end, the eigenvalues form the partition function Z(T,B) from which all thermodynamic properties, including the magnetization M(B,T0) and the magnetic susceptibility χ(T,B0), can be reconstructed. The matrix elements of the interaction operators in the coupled basis set of spin kets have been generated with the help of the irreducible tensor operators for a loop for S = Smin until S = Smax. In addition to the modelling of energy levels for different topologies, a fitting of magnetic data is exemplified by a number of examples like [Fe6] and [Mn3Cr4] systems

Open access
Spatiotemporal Changes in Atmospheric Deposition Rates Across The Czech Republic Estimated in The Selected Biomonitoring Campaigns. Examples of Results Available For Landscape Ecology and Land Use Planning

). Correlation between magnetic susceptibility and heavy metal concentrations on forest soils of the eastern Czech Republic. Journal of Environment and Engineering Geophysics, 19(1), 13-26. Novák, M., Kirchner, J.W, Fottová, D., Přechová, E., Jačková, I., Krám, P. & Hruška. J. (2005). Isotopic evidence for processes of sulphur retention/release in 13 forested catchments spanning a strong pollution gradient (Czech Republic, central Europe). Global Biogeochemical Cycles, 19, GB4012, 14 pp. (Doi: 10.1029/2004GB002396). Pilátová, H., Suchara, I

Open access
The Development of Freshwater Deltas and their Environmental and Economic Significance / Rozwój I Znaczenie Środowiskowo-Użytkowe Delt W Zbiornikach Śródlądowych

limnicznych w warunkach zróżnicowanej antropopresji na przykładzie regionu górnośląskiego. Katowice: Wyd Uniwersytetu Śląskiego; 2008 (in Polish). [29] Kabata-Pendias A, Pendias H. Biogeochemia pierwiastków śladowych. Warszawa: Wyd Nauk PWN; 1999 (in Polish). [30] Magiera T, Strzyszcz Z, Kostecki M. Seasonal changes of magnetic susceptibility in sediments from Lake Zywiec (south Poland). Water Air Soil Pollut. 2002;141:55-71. DOI: 10.1023/A:1021309301714. [31] Büttner O, Becker A, Keliner S, Kuehn K, Wendt-Potthoff K, Zachmann

Open access
Elemental composition of surface soils in Nature Park Shumen Plateau and Shumen City, Bulgaria

.1016/0048-9697(95)04785-9 [8.] Djingova, R.; Wagner, G.; Kuleff, I., Screening of heavy metal pollution in Bulgaria using Populus nigra ‘Italica’, Sci Total Environ, 1999 , 234 :175-184. http://www.ncbi.nlm.nih.gov/pubmed/10507156 [9]. Cervi, E.C.; Saraiva da Costa, A.C.; Granemann de Souza Junior, I., Magnetic susceptibility and the spatial variability of heavy metals in soils developed on basalt, Journal of Applied Geophysics , 2014 , 111 :377-383. http://dx.doi.org/10.1016/j.jappgeo.2014.10.024 [10]. Citterio, S.; Aina, R.; Labra, M.; Ghiani, A.; Fumagalli, P

Open access