Contents of Potentially Toxic Metals and Magnetic Susceptibility of Soils Along a Rural – Urban – Rural Gradient in Bratislava City (Slovakia)
efčík P. 1999. Geochemical atlas of Slovak Republic. Part V – Soils. Soil Science and Conservation Research Institute, Bratislava. Č urlík J. & J urkovič Ľ. 2012. Pedogeochémia. Univerzita Komenského v Bratislave, Bratislava, 228 p. D’ emilio M., C hianese D., C oppola R., M acchiato M. & R agosta M. 2007. Magnetic susceptibility measurements as proxy method to monitor soil pollution: Development of experimental protocols for field survey. Environ. Monitor. Assess. 125: 137-146. Ď urža O. 1999. Heavy metals contamination and magnetic
Comparative analysis of soil magnetic susceptibility and concentration of rare earth elements in soil of problematic areas
.R., Wang, X., Li, T., Xue, W., Liu, Sh., Tian, H., Sun, X. and Zhou, D. (2012). Mineralogical and geochemical compositions of the Pennsylvanian coal in the Adaohai Mine, Daqingshan Coalfield, Inner Mongolia, China: Modes of occurrence and origin of diaspore, gorceixite and ammonianillite. International Journal of Coal Geology, 94, pp. 250-270. Dearing, J.A. (1994). Environmental Magnetic Susceptibility. Using the Bartington MS2 System. Chi Publishing. UK: Kenilworth. Fabijańczyk, P., Zawadzki, J. and Magiera T. (2017). Magnetometric assessment of soil
Magnetic Susceptibility and Heavy Metal Content in Dust From the Lime Plant and the Cement Plant in Opole Voivodeship
extraction system for the determination of 18 trace elements in geochemical samples , Analytical Chemistry, 53 (1) , 61-65 (1981). Dearing J.: Environmental magnetic susceptibility, Using the Bartington MS2 System , Chi Publishing, Kenilworth, England, 1999. Gołuchowska B.J.: Some factors affecting an increase in magnetic susceptibility of cement dust , Journal of Applied Geophysics, 48 (2) , 103-112 (2001). Gołuchowska B., Z. Strzyszcz: Wpływ technologii produkcji klinkieru na zawartość
Sediment origin and pedogenesis in the former mill pond basin of Turznice (north-central Poland) based on magnetic susceptibility measurements
Storkowie, Poznań: 41-48. KUMARAVEL V., SANGODE S.J., SIVA SIDDAIAH N., KUMAR R., 2010, Interrelation of magnetic susceptibility, soil color and elemental mobility in the Pliocene- Pleistocene Siwalik paleosol sequences of the NW Himalaya, India. Geoderma, 154: 267-280. DOI: http://dx.doi.org/10.1016/j.geoderma.2009.10.013 ŁABAZ B., BOGACZ A., 2011, Zawartość wybranych metali ciężkich oraz zasobność gleb podstawowych występujących na terenie obniżenia milicko-głogowskiego. Ochrona Środowiska i Zasobow Naturalnych, 49: 256
Application Of Magnetic Susceptibility of Soils for Identification of Potential Sources of Secondary Dust Emmision in Urban Parks
-42. MARCINEK J., KOMISAREK J. (red.) 2011. Systematyka gleb Polski. Rocz. Glebozn. 62, 3: ss. 193. MATYSEK D., RACLAVSKA H., RACLAVSKY K. 2008. Correlation between magnetic susceptibility and heavy metal concentrations in forest soils of the Eastern Czech Republic. Journal of Environ. and Engineering Geoph. 13, 1: 13-26. NOWAK D.J., CRANE D.E., STEVENS J.C. 2006. Air pollution removal by urban trees and shrubs in the United States. Urban Forestry and Urban Greening 4, 3-4: 11S-123. SCHMIDT A., YARNOLD R., HILL M
Stratigraphic correlation potential of magnetic susceptibility and gamma-ray spectrometric variations in calciturbiditic facies (Silurian-Devonian boundary, Prague Synclinorium, Czech Republic)
. Palaeogeogr. Palaeoclimatol. Palaeoecol. 181, 67-90. Čáp P., Vacek F. & Vorel T. 2003: Microfacies analysis of Silurian and Devonian type sections (Barrandian, Czech Republic). Czech Geol. Surv., Spec. Pap. 15, 1-40. da Silva A. C. & Boulvain F. 2006: Upper Devonian carbonate platform correlations and sea level variations recorded in magnetic susceptibility. Palaeogeogr. Palaeoclimatol. Palaeoecol. 240, 373-388. da Silva A. C., Mabille C. & Boulvain F. 2009a: Influence of sedimentary setting
Tectono-sedimentary analysis using the anisotropy of magnetic susceptibility: a study of the terrestrial and freshwater Neogene of the Orava Basin
. Soc. London, Spec. Publ. 105, 91-99. Garecka M. 2005: Calcareous nannoplankton from the Podhale Flysch (Oligocene-Miocene, Inner Carpathians, Poland). Stud. Geol. Pol. 124, 353-370. Graham J. W. 1954: Magnetic susceptibility anisotropy, an unexploited petrofabric element. Geol. Soc. Am. Bull. 65, 12, 1257-1258. Gravenor C. P. & Wong T. 1987: Magnetic and pebble fabrics and origin of the Sunnybrook Till, Scarborough, Ontario, Canada. Can. J. Earth Sci. 24, 10, 2038-2046. Gross P., Filo I., Halouzka R
Magnetic Susceptibility of Chernozems
REFERENCES Alexeev A.O., Kovalevskaya J.S., Morgun E.G., Somoylova E.M., 1989, Magnitnaya vosprimchivost’ pochv sopriazhennykh landshaftov (Magnetic susceptibility of the soils of associated landscapes; in Russian), Pochvovedeniye , 8, 27 – 36. Babanin V.F., Trukhin V.J., Karpatchevskii L.O., Ivanov A.V., Morozov V.V., 1995, Soil Magnetism , Yaroslavl State University Press, Moskva. Jeleńska M., Hasso-Agopsowicz A., Kopcewicz B., Sukhorada A., Tyamina K., Kądziałko-Hofmokl M., Matviishina Z., 2004, Magnetic properties of the profiles of
Structural, electrical and magnetic features of Kagomé YBaCo4O7 system
and 8 T fields. In Table 1 the calculated values for T 0 and N(E F ) are also reported. The typical value of T 0 and N(E F ) are about 3.4 × 10 8 K and 2.4 × 10 17 eV −1 cm −3 , respectively. 3.5 Magnetization The DC magnetic susceptibility (M/H) measurements for YBaCo 4 O 7 were carried out by using SQUID magnetometer as shown in Fig. 6 . In this paper, we have shown the magnetization of YBaCo 4 O 7 compound measured at 1 Tesla (T) magnetic field. From 80 K to 300 K, the data do not obey a Curie-Weiss relationship. We have collected our data for
Impact of noise barriers on the dispersal of solid pollutants from car emissions and their deposition in soil
.M., Markowski G.R., Cass G.R., 1991. Chemicalcomposition of emissions from urban sources of fine organic aerosol. Environmental Science and Technology 25: 744-759 Hjortenkrans D.S.T., Bergbäck B.G., Häggerud A.V., 2007. Metal emissions from brake linings and tires: case studies of Stockholm, Sweden 1995/1998 and 2005. Environmental Science and Technology 41(15): 5224-5230. Hoffmann V., Knab M., Appel E., 1999. Magnetic susceptibility mapping of roadside pollution. Journal of Geochemical Exploration 66(1-2): 313-326. Hooda P