Search Results

1 - 10 of 65 items :

  • Computer Sciences, other x
Clear All
The (Co-)Location Sharing Game

. Cosley, S. Suri, D. Huttenlocher, and J. Kleinberg. Inferring social ties from geographic coincidences. Proc. of PNAS , 107, 2010. [16] R. Dey, C. Tang, K. Ross, and N. Saxena. Estimating age privacy leakage in online social networks. In INFOCOM , 2012. [17] R. L. Fogues, P. K. Murukannaiah, J. M. Such, and M. P. Singh. Sharing policies in multiuser privacy scenarios: Incorporating context, preferences, and arguments in decision making. ACM Transactions on Computer-Human Interaction (TOCHI) , 24(1):5, 2017. [18] D. Fudenberg and J. Tirole. Game

Open access
Bluffing computer? Computer strategies to the Perudo game

References [1] D. Billings, Algorithms and assessment in computer poker, PhD Thesis, Alberta University, 2006. ⇒61 [2] N. Boros, Machine strategies in the game of Perudo, Univ. Thesis (in Hungarian; supervisor: Gábor Takács), Széchenyi University, Győr, 2009. ⇒57 [3] M. Eigen, R. Winkler, Das Spiel - Naturgesetze steuern den Zufall, R. Piper & Co. Verlag, M¨unchen, 1975. ⇒58 [4] A. Furnham, 50 Psychology Ideas You Really Need to Know, Quercus Publishing, London, 2009. ⇒68 [5] R

Open access
A computational model of outguessing in two-player non-cooperative games

, Washington and Lee University working paper, 2002. ⇒72 [4] C.F. Camerer, Behavioral Game Theory: Experiments in Strategic Interaction, Princeton University Press, 2003, pp. 199-264. ⇒71, 72 [5] C. M. Capra, J.K. Goeree, R. Gomez, C. Holt, Anomalous behavior in traveller’s dilemma?, Amer. Economic Review 89, 3 (1999) 678-690. ⇒72 [6] S. N. Ethier, The Doctrine of Chances, Springer, 2010, pp. 119-155. ⇒73 [7] J. K. Goeree, C. Holt, Stochastic game theory: For playing games, not just for doing theory, Proc

Open access
Some New ‘Short Games’ Within a Set of Tennis

References ApSimon , H. G. (1957). Squash chances. The Mathematical Gazette, 41, 136-137. Carter, W. H. and Crews, S. L. (1974). An analysis of the game of tennis. The American Statistician, 28(4), 130-134. Barnett, T. Brown A. and Pollard G. H. (2006). Reducing the likelihood of long tennis matches. Journal of Sports Science and Medicine, 5 (4), 567-574. Barnett, T. (2016). A recursive approach to modelling the amount of time played in a tennis match. Journal of Medicine and Science in Tennis

Open access
Together or Alone: The Price of Privacy in Collaborative Learning

References [1] Michela Chessa, Jens Grossklags, and Patrick Loiseau. A game-theoretic study on non-monetary incentives in data analytics projects with privacy implications. In Computer Security Foundations Symposium (CSF), 2015 IEEE 28th . IEEE, 2015. [2] Cynthia Dwork. Differential privacy. In Proceedings of the 33rd international conference on Automata, Languages and Programming . ACM, 2006. [3] Arik Friedman, Shlomo Berkovsky, and Mohamed Ali Kaafar. A differential privacy framework for matrix factorization recommender systems. User

Open access
Validation of Sensor-Based Game Analysis Tools in Tennis

://doi.org/10.1080/14763141.2018.1535619 . Lames, M. (1994). Systematische Spielbeobachtung (Systematic Game Observation). Münster: Philippka. PlaySight (2018). Retrieved December 1st, 2018, from https://playsight.com/our-sports/tennis/ SONY, 2018. Retrieved November 27, 2018, from https://www.sony.de/electronics/smart-geraete/sse-tn1w ZEPP, 2018. Retrieved November 27, 2018, from http://www.zepp.com/en-us/

Open access
A Framework for the Game-theoretic Analysis of Censorship Resistance

References [1] T. Alpcan and T. Ba¸sar. Network Security: A Decision and Game-Theoretic Approach. Cambridge University Press, 2010. [2] R. Anderson and T. Moore. The Economics of Information Security. Science, 314(5799):610-613, 2006. [3] R. Anderson, T. Moore, S. Nagaraja, and A. Ozment. Incentives and Information Security. Algorithmic Game Theory, pages 633-649, 2007. [4] R. J. Aumann. Acceptable Points in General Cooperative n-Person Games. Contributions to the Theory of Games, 4:287-324, 1959

Open access
Parallel enumeration of degree sequences of simple graphs II

References [1] S. R. Arikati, A. Maheshwari, Realizing degree sequences in parallel, SIAM J. Discrete Math. 9, 2 (1996) 317-338. ⇒250 [2] M. Ascher, Mu torere: an analysis of a Maori game, Math. Mag. 60, 2 (1987) 90-100. ⇒248, 251 [3] T. M. Barnes, C. D. Savage, A recurrence for counting graphical partitions, Electron. J. Combin. 2 (1995), Research Paper 11, 10 pages (electronic). ⇒252 [4] T. M. Barnes, C. D. Savage, Efficient generation of graphical partitions, Discrete Appl. Math. 78, 1-3 (1997

Open access
Privacy Games: Optimal User-Centric Data Obfuscation

Proceedings of the twenty-ninth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems , pages 123–134. ACM, 2010. [37] W. Liu and S. Chawla. A game theoretical model for adversarial learning. In IEEE International Conference on Data Mining Workshops (ICDM 2009) , 2009. [38] D. J. MacKay. Information theory, inference and learning algorithms . Cambridge university press, 2003. [39] M. Manshaei, Q. Zhu, T. Alpcan, T. Basar, and J.-P. Hubaux. Game theory meets network security and privacy. ACM Computing Surveys , 45(3), 2012. [40] P

Open access
Data Mining in Elite Beach Volleyball – Detecting Tactical Patterns Using Market Basket Analysis

Information Science Society, 26 (3), 619-630. Koch, C., & Tilp, M. (2009). Beach volleyball techniques and tactics: A comparison of male and female playing characteristics. Kinesiology , 41(1), 52–59. Link, D. (2014). A toolset for beach volleyball game analysis based on object tracking. Int. J. Comp. Sci. Sport 13, 24–35 Link, D. (2018). Data Analytics in Professional Soccer . Springer Vieweg, Wiesbaden. Liu, Y., Liao, W.-k., & Choudhary, A. (2005). A two-phase algorithm for fast discovery of high utility itemsets. In Ho, T. B., Cheung, D

Open access