Search Results

1 - 7 of 7 items :

  • "electronic structure" x
  • Nuclear Chemistry x
Clear All
Mössbauer spectroscopy of reduced forms of a Fe-tetraphenylporphyrine complex

. Guilard (Eds.), The porphyrin handbook (Vol. 6, pp. 231–256). San Diego: Academic Press. 4. Gurinovich, G. P., Gurinovich, I. F., Ivashin, N. V., Sinyakov, G. N., Shulga, A. M., Terekhov, S. N., Filatov, I. V., & Dziliński, K. (1988). Electronic structure of metalloporphyrin π-anions. J. Mol. Struct. , 172 , 317–343. DOI: 10.1016/0022-2860(88)87026-1. 5. Fukuzumi, S. (2003) Electron transfer chemistry of porphyrins and metalloporphyrins. In K. M. Kadish, K. M. Smith & G. Guilard (Eds.), The porphyrin handbook (Vol. 8, pp. 115–151). Amsterdam: Academic Press

Open access
Mössbauer study of a tetrakis (pentafluorophenyl) porphyrin iron (III) chloride in comparison with the fluorine unsubstituted analogue

Abstract

Mössbauer investigations, in association with density functional theory (DFT) calculations, have been conducted for the molecular and electronic structures of iron (III) [tetrakis (pentafluorophenyl)] porphyrin chloride [(F20TPP)Fe:Cl], as a Fe(III)-tetraphenylporphyrin complex containing chloride axial ligand and substituted hydrogen atoms by fluorine ones in the four phenyl rings, in comparison with its fluorine unsubstituted analogue [(TPP)Fe:Cl]. It was found that the parameters of Mössbauer spectra of both complexes are close to one another, and correspond to the high-spin state of Fe(III) ions, but they show the different temperature dependence and the quadrupole doublets in Mössbauer spectra show different asymmetry at low temperatures. Results of DFT calculations are analyzed in the light of catalytic activity of the halogenated complex.

Open access
EMR study and superposition model analysis of Cr3+ and Fe3+ impurity ions in mullite powders used in aerospace industry

Abstract

In this work, the electron magnetic resonance (EMR) spectra of the mullites powders were measured for different grain sizes (0.07 and 0.12 mm). We have used EMR spectroscopy at X-band, combined with superposition model (SPM) calculations to reveal electronic structure and establish correlations between structure, and surroundings of these complexes.

Open access
Isotropic distributions in hcp crystals

ferromagnetic iron. Phys. Status Solidi B , 123 , 649–652. 11. Šob, M. (1985). Electronic structure and positron annihilation in alkali metals: Isolation of ionic core contribution and valence high-momentum components. Solid State Commun ., 53 , 249–253. 12. Aguiar, J. C., Mitnik, D., & DiRocco, H. O. (2015). Electron momentum density and Compton profile by a semi-empirical approach. J. Phys. Chem. Solids , 83 , 64–69. 13. Ahuja, B. L., Sharma, M. D., Sharma, B. K., Hamouda, S., & Cooper, M. J. (1994). Compton profile of polycrystalline yttrium. Phys

Open access
Understanding electron-positron momentum densities in solids: effect of the positron distribution

, 6950–6970. DOI: 10.1103/PhysRevB.47.6950. 10. Andersen, O. K. (1975). Linear methods in bands theory. Phys. Rev . B , 12 , 3060–3083. DOI: 10.1103/PhysRevB.12.3060. 11. Skriver, H. L. (1984). The LMTO method. Muffin-tin orbitals and electronic structure . Berlin: Springer-Verlag. 12. Harthoorn, P., & Mijnarends, P. E. (1978). The effect of symmetry on electron momentum densities in solids. J. Phys. F-Met. Phys ., 8 , 1147–1158. http://iopscience.iop.org/0305-4608/8/6/016/pdf/0305-4608_8_6_016.pdf .

Open access
Magnetic and structural properties of Sc(Fe1−xSix)2 Laves phases studied by Mössbauer spectroscopy and neutron diffraction

, silicides, and phosphides of transition and noble metals. J. Less-Common Met. , 82 , 75–80. DOI: 10.1016/0022-5088(81)90200-9. 7. Wiertel, M., Surowiec, Z., Beskrovnyi, A. I., Sarzyński, J., & Budzyński, M. (2005). Determination of magnetic moments and hyperfine fields in ScFe 2 Laves phase compound. Annual Report Frank Laboratory of Neutron Physics . Dubna, Russian Federation: Joint Institute for Nuclear Research. Retrieved June 18, 2014 from: http://flnp.jinr.ru/img/304/188_2005_Annual_Report.pdf . 8. Yamada, H. (1988). Electronic structure and magnetic

Open access
The influence of thermal annealing on structure and oxidation of iron nanowires

. M., & Schwertmann, U. (2003). The iron oxides. Structure, properties, reactions, occurrences and uses . Weinheim, Germany: Wiley-VCH. 9. Wang, C. M., Baer, D. R., Amonette, J. E., Engelhard, M. H., Antony, J., & Qiang, Y. (2009). Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. J. Am. Chem. Soc. , 131 (25), 8824–8832. DOI: 10.1021/ja900353f. 10. Long, G. J., Hautot, D., Pankhurst, Q. A., Vandormael, D., Grandjean, F., Gaspard, J. P., Briois, V., Hyeon, T., & Suslick, K. S. (1998). Mossbauer-Bauer-effect and x

Open access