Search Results

1 - 3 of 3 items :

  • "cyclic potentiodynamic test" x
  • Sociology of Science, Technology, and Environment x
Clear All

Abstract

Exhaust systems are susceptible to in-service wear because of their exposition to the very aggressive corrosive environment. Various stainless steels grades (mostly ferritic and austenitic, but also martensitic and duplex) and protective coatings are currently used for exhaust system elements to increase their aestetics and corrosion resistance. This article focuses on evaluation and comparison of the common corrosion properties of two stainless steels with different microstructures (ferritic and austenitic) used for exhaust system components at the low ambient temperature (35 °C). An aggressive acidic corrosion solution for electrochemical cyclic potentiodynamic tests (ASTM G61) was chosen to simulate partly inner (condensate) and also external environment (reaction of exhaust gases with water, chlorides in solution after winter road maintenance). Exposure tests of the pitting corrosion resistance were performed according to ASTM G48 standard method.

Abstract

AISI 304 austenitic stainless steel is recommended and used for various applications in industry, architecture and medicine. Presence of halides in environment evokes a possibility of the local corrosion which limits seriously exploitation of this material in aggressive conditions. The presented paper is focused on the pitting corrosion resistance (“as received” steel surface) in 1M chloride solution (pH=1.2) at a common (20 °C) and an elevated (50 °C) ambient temperatures. 24-hours exposure immersion test (ASTM G48) and cyclic potentiodynamic test (ASTM G61) are used as the independent test methods. The exposure immersion test is carried out with cross-rolled and longitudinally rolled specimens and the effect of direction of rolling on the resistance to pitting is studied.

applications in industry, architecture and medicine. Presence of halides in environment evokes a possibility of the local corrosion which limits seriously exploitation of this material in aggressive conditions. The presented paper is focused on the pitting corrosion resistance (“as received” steel surface) in 1M chloride solution (pH=1.2) at a common (20 °C) and an elevated (50 °C) ambient temperatures. 24- hours exposure immersion test (ASTM G48) and cyclic potentiodynamic test (ASTM G61) are used as the independent test methods. The exposure immersion test is carried