Search Results

1 - 10 of 18 items :

  • "Trophic level" x
  • Clinical Medicine x
Clear All
Can thiol compounds be used as biomarkers of aquatic ecosystem contamination by cadmium?

Can thiol compounds be used as biomarkers of aquatic ecosystem contamination by cadmium?

Due to anthropogenic activities, heavy metals still represent a threat for various trophic levels. If aquatic animals are exposed to heavy metals we can obviously observe considerable toxicity. It is well known that an organism affected by cadmium (Cd) synthesize low molecular mass thiol compounds rich in cysteine (Cys), such as metallothioneins (MT) and glutathione (GSH/GSSG). The aim of this study was to summarize the effect of Cd on level of thiol compounds in aquatic organisms, and evaluate that the concentrations of thiol compounds are effective indicators of Cd water pollution and explain their potential use in biomonitoring applications.

Open access
Toxins produced in cyanobacterial water blooms - toxicity and risks

different trophic levels from the eutrophic Lake Chaohu, China. Environmental Toxicology   20 : 293-300. Yoshida T, Makita Y, Nagata S, Tsutsumi T, Yoshida F, Sekijima M, Tamura SI, and Ueno Y. (1997) Acute oral toxicity of microcystin-LR, a cyanobacterial hepatotoxin, in mice. Natural Toxins   5 : 91-95. Yu SZ. (1995) Primary Prevention of Hepatocellular-Carcinoma. Journal of Gastroenterology and Hepatology   10 : 674-682. Zhou L, Yu H, and Chen K. (2002) Relationship between microcystin in

Open access
Determination of lotaustralin in Rhodiola species

(12):616-8. 17. Rojas MG, Morales-Ramo JA. Tri-trophic level impact of host plant linamarin and lotaustralin on Tetranychus urticae and its predator Phytoseiulus persimilis. J Chem Ecol 2010; 36:1354-1362. 18. Nyirenda DB, Chiwona-Karltun L, Chitundu M, Haggblade S, Brimer L. Chemical safety of cassava products in regions adopting cassava production and processing - Experience from Southern Africa, Food Chem Toxic 2011; 49:607-612. 19. Burns AE, Howard Bradbury J, Cavagnaro TR, Gleadow RM. Total cyanide content of cassava food products in

Open access
Temporal dynamics of soil nematode community structure under invasive Ambrosia trifida and native Chenopodium serotinum

-1393(98)00123-1 [4] De Deyn, G. B., Raaijmakers, C. E., van Ruijven, J., Berendse, F., van der Putten, W. H. (2004): Plant species identity and diversity effects on different trophic levels of nematodes in the soil food web. Oikos, 106: 576–586 http://dx.doi.org/10.1111/j.0030-1299.2004.13265.x [5] Ehrenfeld, J. E. (2003): Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems, 6: 503–523 http://dx.doi.org/10.1007/s10021-002-0151-3 [6] Ferris, H., Bongers, T., de Goede, R. G. M. (2001): A framework for

Open access
Effects of land use history and inoculation with Fusarium oxysporum f. sp. cucumberinum Owen on soil nematodes communities

[1] Akinsanmi, O. A., Adekunle, O. K. (2003): Effect of Fusarium oxysporum f. sp. glycines and Sclerotium rolfsii on the pathogenicity of Meloidogyne incognita race 2 to soybean. Plant Soil, 253: 429–435 http://dx.doi.org/10.1023/A:1024880115651 [2] Berkelmans, R., Ferris, H., Tenuta, M., Van Bruggen, A. H. C. (2003): Effects of long-term crop management on nematode trophic levels other than plant feeders disappear after 1 year of disruptive soil management. Appl. Soil Ecol., 23: 223–235 http://dx.doi.org/10

Open access
Different changes of soil nematode communities in replant and continuous-planting peach orchards and their indicative value for peach replant problem

References ASKARY, T. H., WALIULLAH, M. I. S., GUPTA, S. (2012): Population fl uctuation of plant parasitic nematodes associated with pome, stone and nut fruit nurseries. Annu. Plant Prot. Sci., 20: 265 - 267 BARKER, K. R., CAMPBELL, C. L. (1981): Sampling nematode populations. In: Zuckerman, BM, Rhode RA, editor. Plant Parasitic Nematodes. New York, Academic Press, pp. 451 - 471 BERKELMANS, R., FERRIS H., TENUTA, M., BRUGGEN, A. H. C. (2003): Effects of long-term crop management on nematode trophic levels other

Open access
Food web diagnostics and functional diversity of soil inhabiting nematodes in a natural woodland

. Mediterr., 35: 109–121 [4] Berkemans, R., Ferris, H., Tenuta, M., van Bruggn, A. H. C. (2003): Effects of long-term crop management on nematode trophic levels other than plant feeders disappear after 1 year of disruptive soil management. Appl. Soil Ecol., 23: 223–235 http://dx.doi.org/10.1016/S0929-1393(03)00047-7 [5] Bongers, T. (1990): The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia, 83: 14–19 http://dx.doi.org/10.1007/BF00324627

Open access
Parasite communities in two sparid fishes from the western Mediterranean: a comparative analysis based on samples from three localities off the Algerian coast

Boops boops Linnaeus (1758) (Teleostei Sparidae) in the Gulf of Lion]. Ann. Parasitol. Hum. Comp., 55: 467 - 476 (In French) SANTINI, F., CARNEVALE, G., SORENSON, L. (2014): First multi-locus timetree of seabreams and porgies (Percomorpha: Sparidae). Italian J. Zool., 81:55 - 71. DOI: 10.1080/11250003.2013.878960 STERGIOU, K.I., KARPOUZI, V.S. (2002): Feeding habits and trophic levels of Mediterranean fi sh. Rev. Fish Biol. Fisheries, 11: 217 -254. DOI: 10.1023/A:1020556722822 TORTONESE, E. (1986): Centracanthidae. In

Open access
Gastrointestinal digeneans (Platyhelminthes: Trematoda) of horseshoe and vesper bats (Chiroptera: Rhinolophidae and Vespertilionidae) in Serbia

navuk, 3: 104 -110 SIEMERS, B.M., GREIF, S., BORISSOV, I., VOIGT-HEUCKE, S.L., VOIGT, C.C. (2011): Divergent trophic levels in two cryptic sibling bat species. Oecologia, 2011; 166: 69-78. DOI: 10.1007/s00442-011-1940-1 VAUCHER, C. (1975): On some trematodes parasites of bats and insectivores. Bull. Soc. Neuchatel. Sci. Nat., 98: 17-25 VOJTKOVA, L. (1974): Trematoda of amphibians of the CSSR. I. Adult Trematodes. Folia Fac. Sci. Nat. Univ. Purk. Brun., 15: 3-131 WARBURTON, E.M., PEARL, C.A., VONHOF, M

Open access
Hematological and histopathological changes in Hoplias malabaricus from the São Francisco River, Brazil caused by larvae of Contracaecum sp. (Nematoda, Anisakidae)

endoparasitic infracommunities and the trophic level of Psedoplatystoma corruscans and Schizodon borelli (Osteichthyes) of the high Paraná river. Mem. Inst. Oswaldo Cruz., 91 (4): 441 - 448 MACHADO, M.H., PAGOTTO, J.P.A., YAMADA F.H. (2002): Ocorrência de larvas de Contracaecum sp. (Nematoda: Anisakidae) em H. malabaricus (Bloch, 1794) (Pisces, Erythrinidae) do reservatório da Usina Hidrelétrica de Segredo (Bacia do Iguaçu), Paraná, Brasil. Resumos do VII Encontro Brasileiro de Patologistas de Organismos Aquáticos, Foz do Iguaçu, 134 MADI, R

Open access