Search Results

1 - 2 of 2 items :

  • Life Sciences, other x
Clear All

References 1. Benedict, R. C., Strange, E. D., and Lakritz, L.: 23rd Tobacco Chemists' Research Conference, Philadelphia, Penn., 1969. 2. Benedict, R. C., Lakritz, L., Strange, E. D., and Stedman, R. L.: Chem. & Incl., Soo, 13 June 1970. 3. Bielski, B. H. J ., and Alien, A. 0.: J. Am. Chem.Soc. 92 (1970) 3793· 4. Bilimoria, M. H., and Nisbet, M. A.: Beitr. Tabakforsch. 6 (1971) ???. 5. Calder, J. H., Curtis, R. C., and Fore, H.: The Lancet 1963 (:r.) 556. ' 6. Edgar, J. A.: Experientia 25 (1969) 1214. 7. Edgar, J. A.: Nature 22.7 (1970) 24. 8. Hagopian, M

+ {\sin ^2}\left( {\frac{t}{2}} \right)\,\left[ {\,\left( {\frac{{2\alpha \,{l^2}}}{3} + \frac{{\beta {l^3}}}{4}} \right)\cos t + \frac{{\beta \,{l^3}}}{8}\cos \,2t + \frac{{4\alpha {l^2}}}{3} + \frac{{\beta \,{l^3}}}{8}} \right] \end{array}$$ (35) The velocity becomes x ˙ ( t ) = − l sin t + 2 sin t 2 cos t 2 − 2 α l 2 3 + β l 3 4 sin ⁡ t − β l 3 4 sin 2 t $$\begin{array}{} \displaystyle \dot x(t) = - l\sin \,t + 2\sin \left( {\frac{t}{2}} \right)\cos \left( {\frac{t}{2}} \right)\,\left[ { - \,\left( {\frac{{2\alpha \,{l^2}}}{3} + \frac{{\beta {l^3}}}{4}} \right)\sin t