###### A new class of almost complex structures on tangent bundle of a Riemannian manifold

)-tensor bundle of a Riemannian metric. Int. J. Geom Meth. Modern Phys. 10 (4) (2013) 18p. [10] A. A. Salimov, A. Gezer: On the geometry of the (1, 1)-tensor bundle with Sasaki type metric. Chinese Ann. Math. Ser. B 32 (3) (2011) 1–18. [11] J. Zhang, F. Li: Symplectic and Kähler structures on statistical manifolds induced from divergence functions. In: Conference paper in Geometric Science of Information . Springer (2013) 595–603.

###### Geometry of Mus-Sasaki metric

.A Salimov, A. Gezer: On the geometry of the (1, 1)-tensor bundle with Sasaki type metric. Chinese Annals of Mathematics 32 (3) (2011) 369–386. [14] A.A. Salimov, A. Gezer, K. Akbulut: Geodesics of Sasakian metrics on tensor bundles. Mediterr. J. Math 6 (2) (2009) 135–147. [15] A.A. Salimov, S. Kazimova: Geodesics of the Cheeger-Gromoll Metric. Turk. J. Math. 33 (2009) 99–105. [16] S. Sasaki: On the differential geometry of tangent bundles of Riemannian manifolds II. Tohoku Math. J. 14 (1962) 146–155. [17] M. Sekizawa: Curvatures of Tangent

###### Gabor frames on local fields of positive characteristic

.Wang, Necessary and sufficient conditions for expansions of Gabor type, Analysis in Theory and Applications, vol. 22, pp. 155-171, 2006. [9] X.L. Shi and F. Chen, Necessary conditions for Gabor frames, Science in China : Series A. vol. 50, no. 2, pp. 276-284, 2007. [10] D. Li, G. Wu and X. Zhang, Two sufficient conditions in frequency domain for Gabor frames, Applied Mathematics Letters, vol. 24, pp. 506-511, 2011. [11] K. Gröchenig, Foundation of Time-Frequency Analysis, Birkhäuser, Boston, 2001. [12] H

###### Bi-unique range sets with smallest cardinalities for the derivatives of meromorphic functions

the Nevanlinna characteristics of some meromorphic functions ”Theory of functions, functional analysis and their applications” Izd-vo Khar’kovsk, Un-ta 14 1971 83 87 [16] B. Yi and Y. H. Li, The uniqueness of meromorphic functions that share two sets with CM , Acta Math. Sinica Chinese Ser., 55(2) (2012), 363-368. Yi B. Li Y. H. The uniqueness of meromorphic functions that share two sets with CM Acta Math. Sinica Chinese Ser. 55 2 2012 363 368 [17] H. X. Yi, Uniqueness of meromorphic functions and a question of

###### Some results on uniqueness of meromorphic functions sharing a polynomial

References [1] T. C. Alzahary and H. X. Yi, Weighted value sharing and a question of I. Lahiri, Complex Var. Theory Appl., 49(2004), 1063-1078. [2] A. Banerjee, Uniqueness of meromorphic functions sharing two sets with finite weight, Portu- gal. Math. (N.S.) 65(2008), 81-93. [3] W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoam, 11(1995), 355-373. [4] H. H. Chen and M. L. Fang, On the value distribution of fnf0, Sci. China Ser. A 38(1995), 789-798. [5] M. L. Fang and H. L

###### Existence of positive solutions of four-point BVPs for one-dimensional generalized Lane-Emden systems on whole line

*Supported by Natural Science Foundation of Guangdong province (No:7004569) and Natural Science Foundation of Hunan province, P.R.China(No:06JJ50008) References [1] R.P. Agarwal, Boundary value problems for higher order differential equations , World Scientific, Singapore, 1986. [2] C. Avramescu, C. Vladimirescu, Existence of Homoclinic solutions to a nonlinear second order ODE, Dynamics of continuous, discrete and impulsive systems , Ser. A, Math Anal. 15 (2008), 481-491. [3] C. Avramescu, C. Vladimirescu, Existence of solutions to

###### Generalization of value distribution and uniqueness of certain types of difference polynomials

References [1] A. Banerjee, Meromorphic functions sharing one value, Int. J. Math. Math. Sci., 22(2005), 3587-3598. [2] S. S. Bhoosnurmath and S. R. Kabbur, Value distribution and uniqueness theorems for difference of entire and meromorphic functions, Int. J. Anal. Appl., 2(2013), 124-136. [3] M. R. Chen and Z. X. Chen, Properties of difference polynomials of entire functions with Finite order, Chinese Ann. Math. Ser. A, 33(2012), 359-374. [4] Y. M. Chiang and S. J. Feng, On the Nevanlinna

###### The exterior Bitsadze-Lavrentjev problem for quaterelliptic-quaterhyperbolic equations in a doubly connected domain

-Rassias Equations with Nonsmooth Degenerate Line in Mixed Domains, Science in China, Series A: Mathematics, 51(1)(2008), 5-36. [22] G. C.Wen, The Tricomi and Frankl Problems for Generalized Chaplygin Equations in Multiply Connected Domains, Acta Math. Sin., 24(11), 1759-1774. [23] G. C. Wen, Oblique Derivative Problems for Generalized Rassias Equations of Mixed Type with Several Characteristic Boundaries, Electr. J. Diff. Equations, 2009(65)(2009), 1-16. [24] G. C. Wen, Elliptic, Hyperbolic and Mixed Complex Equations with Parabolic Degeneracy [ Including Tricomi-Bers and

###### Novel orthogonal functions for solving differential equations of arbitrary order

fractional derivative and its applications, in: International Conference on Vibrating Engineering'98, Dalian, China, 1998, pp. 288-291. [9] E. Keshavarz, Y. Ordokhani, M. Razzaghi, A numerical solution for fractional optimal control problems via Bernoulli polynomials, J. Vibr. Contr., (2015) doi: 10.1177/1077546314567181. [10] S.A. Yousefi, A. Lotfi, M. Dehghan, The use of a Legendre multiwavelet collocation method for solving the fractional optimal control problems, J. Vibr. Contr., 17(13) (2011) 2059-2065. [11] M. Dehghan