Search Results

81 - 90 of 262 items :

  • Chemical Engineering x
Clear All
Removal of phenol from wastewater using activated waste tea leaves

References 1. Aksu, Z. & Akpinar, D. (2001). Competitive biosorption of phenol and chromium(VI) from binary mixtures onto dried anaerobic activated sludge, Biochem. Eng. J. 7, 183-193. DOI: 10.1016/S1369-703X(00)00126-1. 2. Navarro, A.E., Portales, R.F., Sun-Kou, M.R. & Llanos, B.P. (2008). Effect of pH on phenol biosorption by marine seaweeds, J. Hazard. Mater. 156, 405-411. DOI: 10.1016/j. jhazmat.2007.12.039. 3. Kumar, N.S. & Min, K. (2011). Phenolic compounds biosorption onto Schizophyllum

Open access
LiOH.H2O as a catalyst for Knoevenagel and Gewald reactions

phosphate-aluminum oxide as a new catalyst. J. Org. Chem. 49 (26), 5195-5197. DOI: 10.1021/jo00200a036. Rao, P. S. & Venkataratnam, R. V. (1991). Zinc chloride as a new catalyst for knoevenagel condensation. Tetrahedron Lett. 32 (41), 5821-5822. DOI:10.1016/S0040-4039(00)93564-0. Rai, U. S., Isloor, A. M., Shetty, P., Vijesh, A. M., Prabhu, N., Isloor, S., Thiageeswaran, M. & Fun, H.-K. (2010). Novel chromeno[2,3-b]pyrimidine derivatives as potential anti-microbial agents. Eur. J. Med. Chem. 45 (6), 2695-2699. DOI

Open access
Effect of waste rubber powder as filler for plywood application

References 1. Malaysian Timber Industry Board. (2012). Retrieved 1-12-2013 from http://www.mtib.gov.my 2. Ong, H.R., Prasad, D.M.R., Khan, M.R., Rao, D.S., Jeyaratnam, N. & Raman, D.K. (2012). Effect of Jatropha Seed Oil Meal and Rubber Seed Oil Meal as Melamine Urea Formaldehyde Adhesive Extender on the Bonding Strength of Plywood. J. Appl. Sci. 12(11), 1148-1153. DOI: 10.3923/ jas.2012.1148.1153. 3. Ong, H.R., Prasad, R., Khan, M.M.R. & Chowdhury, M.N.K. (2012). Effect of palm kernel meal as melamine urea

Open access
Novel lignocellulosic wastes for comparative adsorption of Cr(VI): equilibrium kinetics and thermodynamic studies

: 10.1016/j.jhazmat.2012.04.054. 6. Chen, D., Zhang, J. & Chen, J. 2010. Adsorption of methyl tert-butyl ether using granular activated carbon: Equilibrium and kinetic analysis. Int. J. Environ. Sci. Tech. 7, 235–242. DOI: 10.1007/BF03326133. 7. Kennedy, L.J., Vijaya, J.J. & Sekaran, G. 2004. Effect of two-stage process on the preparation and characterization of porous carbon composite from rice husk by phosphoric acid activation. Ind. Eng. Chem. Res. 43, 1832–1838. DOI: 10.1021/ie034093f. 8. Sivakumar, D. 2013. Experimental and analytical model

Open access
The Formation of Polycomplexes of Poly(Methyl Vinyl Ether-Co-Maleic Anhydride) and Bovine Serum Albumin in the Presence of Copper Ions

-organotin supramolecular coordination polymers based on CuCN and pyridine bases. J. Organomet. Chem. 696, 1668-1676. DOI: 10.1016/j.jorganchem. 2011.02.003. 9. Andrianov, A.K., Marin, A. & DeCollibus, D.P. (2011). Microneedles with intrinsic immunoadjuvant properties: microfabrication, protein stability, and modulated release. Pharm. Res. 28, 58-65. DOI: 10.1007/s11095-010-0133-7. 10. Ding, N.W., Lin, W.H., Sun, W.L. & Shen, Z.Q. (2011). A novel hyperbranched aromatic polyamide containing bithiazole: synthesis, metal complexation and magnetic properties

Open access
Thermal stability for the effective use of commercial catalase

/2/417.full.pdf+html 8. Yoshimoto, M., Sakamoto, H., Yoshimoto, N., Kuboi, R. & Nakao, K. (2007). Stabilization of quaternary structure and activity of bovine liver catalase through encapsulation in liposomes. Enz. Microb. Technol. 41, 849-858. DOI:10.1016/j. enzmictec.2007.07.008. 9. Na, W., Wei, Q., Sun, H. & Nie, Z.R. (2013). Catalase immobilized on siliceous mesocellular foam with controlled window size. J. Porous Materials 20(1), 75-79. DOI: 10.1007/ s10934-012-9576-z. 10. Doğaç, Y.İ. & Teke, M. (2013). Immobilization of

Open access
Improvement of enzyme stability via non-covalent complex formation with dextran against temperature and storage lifetime

containing a whey protein concentrate obtained from milk serum through carboxymethylcellulose complexation. Food Hydrocoll 20, 793 - 799. DOI:10.1016/j.foodhyd.2005.07.011. Montilla, A., Casal, E., Moreno, J., Belloque, J., Olano, A. & Corzo, N., (2007). Isolation of bovine β-lactoglobulin from complexes with chitosan. Int Dairy J. 17, 459 - 464. DOI:10.1016/j.idairyj.2006.05.009. Turgeon, S. L., Beaulieu, M., Schmitt, C. & Sanchez, C., (2007). Protein-polysaccharide interactions: phase-ordering kinetics

Open access
The simplex optimization for high porous carbons preparation

. (2005). Methane storage in wet activated carbon: Studies on the charging/discharging process. Carbon 43, 2007-2012. DOI: 10.1016/j.carbon.2005.03.017. Rodriguez-Reinoso, F., Nakagawa, Y., Silvestre-Albero, J., Juarez-Galan, J.M. & Molina-Sabio, M. (2008). Correlation of methane uptake with microporosity and surface area of chemically activated carbons. Microporous Mesoporous Mater. 115, 603-608. DOI: 10.1016/j.micromeso.2008.03.002. Almansa, C., Molina-Sabio, M. & Rodriguez-Reinoso, F. (2004). Adsorption of

Open access
Dry and steam reforming of methane. Comparison and analysis of recently investigated catalytic materials. A short review.

.03.017 . 41. Liu, H., Wierzbicki, D., Debek, R., Motak, M., Grzybek, T., Da Costa, P. & Gálvez, ME. (2016). La-promoted Nihydrotalcite-derived catalysts for dry reforming of methane at low temperatures Fuel, https://doi.org/10.1016/j.fuel.2016.05.073 . 42. Gao, X., Liu, G., Wei, Q., Yang, G., Masaki, M., Peng, X., Yang, R. & Tsubaki, N. (2017). Carbon nanofibers decorated SiC foam monoliths as the support of anti-sintering Ni catalyst for methane dry reforming Int. J. Hydrogen Energy, https://doi.org/10.1016/j.ijhydene.2017.05.164 . 43. de Souza, V.P., Costa

Open access
Determination of ascorbic acid using differential pulse voltammetry method on aniline-co-para–aminophenol modified electrode

electropolymerization. J. Solid State Electrochem. 19(9), 2643–2652. DOI: 10.1007/s10008-015-2853-4. 8. Chen, Z., Lv, H., Zhu, X., Li, D., Zhang, S., Chen, X. & Song, Y. (2014). Electropolymerization of aniline onto anodic WO3 film: An approach to extend polyaniline electroactivity beyond pH 7. J. Phys. Chem. C. 118(47), 27449–27458. DOI: 10.1021/jp509268t. 9. Abalyaeva, V.V. & Efimov, O.N. (2011). Synthesis and electrochemical behavior of polyaniline doped by electroactive anions. Russ. J. Electrochem. 47(11), 1299–1306. DOI: 10.1134/S1023193511110024. 10. Han, J

Open access