Search Results

81 - 90 of 123 items :

  • Materials Sciences, other x
Clear All
Structural and optical properties of Dy3+ doped Sr2SiO4 phosphors

Abstract

Dysprosium doped strontium silicate phosphor namely (Sr2SiO4:Dy3+) was prepared by low-temperature solution combustion method using urea (CO(NH2)2) as a fuel. The material was characterized by powder X-ray diffraction (XRD), FT-IR, SEM and EDX. The average crystallite sizes was calculated by Scherer formula. Thermoluminescence study was carried out for the phosphor which showed single glow curve. The kinetic parameter were calculated by using Chen’s glow curve method. Photoluminescence spectra revealed strong transition at 473 nm (blue), 571 nm (yellow) and weak transition at 645 nm (red). These peaks were assigned to transition 4F9/26H15/2, 13/2, 11/2. CIE graph of Sr2SiO4:Dy3+ phosphor is suitable for the generation of white light emission.

Open access
Growth, spectral, density functional theory (DFT) and Hirshfeld surface analysis on 4-aminopyridinium adipate monohydrate nonlinear optical single crystal

Abstract

4-aminopyridinium adipate monohydrate (4APA) was grown by slow evaporation solution growth technique. The functional groups in the grown crystal were identified from FT-IR spectral evaluation. The optical properties together with transmittance of the grown crystal were obtained from UV-Vis spectroscopic study. The mechanical and thermal properties of the grown crystal were studied using Vickers microhardness and TGA/DTA analyses, respectively. Microhardness test revealed that 4-aminopyridinium adipate monohydrate crystal is a soft category material. The density functional method (DFT) was performed using B3LYP with the 6-311G (d,p) basis set. The electronic charge distribution, reactivity of the molecules and the molecular electrostatic potential (MEP) of the grown crystal were analyzed using the B3LYP method. The intermolecular interactions that exist in the crystal structure of the 4APA have also been investigated by Hirshfeld surface analysis. The nonlinear optical properties of the 4APA crystal were confirmed by Kurtz-Perry technique.

Open access
Synthesis, growth, structural, thermal and third order nonlinear optical properties of novel organic single crystal: 4-methylpyridinium 3-nitrophthalate

Abstract

A novel 4-methylpyridinium 3-nitrophthalate (4MP3NP) was synthesized and the crystals were grown by using slow evaporation method. The structural data of the grown crystal was collected by single crystal X-ray diffraction. It revealed that the 4MP3NP crystal belongs to triclinic crystal system with a space group P1. Structure of the synthesized compound was established using SHELXL 97 program package. The crystalline nature and composition of the grown crystal was established using high resolution X-ray diffraction and FT-IR analyses. UV-Vis transmittance and photoluminescence studies revealed the optical transmission window and electronic transition mechanism of ions, respectively. The laser damage threshold of the grown crystal was estimated by Nd:YAG laser and these results were mutually related to specific heat capacity of the grown crystal. The third-order nonlinear optical susceptibility of the grown crystal was studied by Z-scan technique.

Open access
Thermal and electrical properties of polyimide/PANI nanofiber composites prepared via in situ polymerization

Abstract

Polyimide/polyaniline nanofiber composites were prepared by in situ polymerization with various weight percentages of polyaniline (PANI) nanofibers. X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR), proved the successful preparation of PANI nanofiber composite films. In addition, thermal stability of PI/PANI nanofiber composites was superior relative to PI, having 10 % gravimetric loss in the range of 623 °C to 671 °C and glass transition temperature of 289 °C to 297 °C. Furthermore, the values of the loss tangent tanδ and AC conductivity σAC of the nanocomposite films were notably higher than those of pure polyimide. The addition of 5 wt.% to 15 wt.% PANI nanofiber filler enhanced the activation energy of PI composites from 0.37 eV to 0.34 eV.

Open access
Preparation of nanosized NaA zeolite and its surface modification by KH-550

Abstract

Nanosized NaA zeolite was successfully synthesized by hydrothermal method using tetraethyl orthosilicate (TEOS) and aluminum isopropoxide (AIP) as the main raw materials. The surface modification of NaA zeolite was carried out by silane coupling agent 3-aminopropyltriethoxysilane (KH-550). The effects of silane coupling agent dosage, reaction temperature, reaction time, hydrolysis time and pH value on grafting rate of NaA zeolite were investigated in detail. The zeolites were characterized by XRD, SEM-EDS, FT-IR and TG-DTA. The results showed that the surface of NaA zeolite was modified successfully by KH-550. The optimal modification conditions obtained were as follows: the dosage of coupling agent in 95 % ethanol – 1.6 %, reaction temperature − 70 °C, reaction time – 2 h, hydrolysis time – 20 min, and pH value – 3.5. Under these conditions, the grafting rate of modified NaA zeolite was 3.95 %.

Open access
Structural, spectral, electrical, Z-scan and HOMO LUMO studies on new 2-amino-6-methylpyridinium 2-hydroxybenzoate crystal

Abstract

New organic single crystals of 2-amino-6-methylpyridinium 2-hydroxybenzoate (2A6M2H) were grown by slow evaporation solution growth technique at room temperature. The grown crystal structure was studied using single crystal XRD. Crystalline nature and phases were confirmed by powder XRD analysis. FT-IR study was used to identify the functional groups present in the compound. UV-Vis study revealed that the lower cut off wavelength of the crystal is at 350 nm. The dielectric studies indicated the low value of dielectric loss at high frequency. Mechanical properties of the crystals were studied using Vickers microhardness test. The Z-Scan studies were conducted for the crystal using He–Ne laser.

Open access
Growth, solvent effect, optical and electrical properties of sodium 4-hydroxybenzenesulfonate dihydrate

Abstract

Single crystal of sodium 4-hydroxybenzenesulfonate dihydrate (Na-4-HBS) was grown from an aqueous solution by slow evaporation method. Powder X-ray diffraction study was carried out to identify the lattice parameters of the crystal. FT-IR spectral analysis confirmed the existence of various functional groups in the compound. The optical transmittance, cut-off wavelength and band gap energy were estimated from the UV-Vis studies. Photoluminescence studies revealed the transition mechanism by optical excitation. The variation of dielectric properties and AC conductivity of the grown crystal with frequency was studied at different temperatures. Measurements of mechanical properties of Na-4-HBS were carried out to find the hardness of the material. The laser induced surface damage threshold and relative second harmonic generation nonlinear optical properties of the grown crystal were studied using Q-switched Nd:YAG laser.

Open access
Structural, optical, thermal and NLO behavior of zinc hydrogen maleate dihydrate single crystal

Abstract

Single crystal of zinc hydrogen maleate dihydrate (ZHMD) is grown by slow evaporation method at room temperature. The compound crystallizes in triclinic system with noncentrosymmetric space group P1. FT-IR and FT-Raman spectra of ZHMD are recorded. The versatile DFT is employed to understand the band structure of the crystal. Dipole moment of the molecule, ionization energy and electron affinity are established. The potential energy distribution PED of the vibrational modes is calculated using VEDA4. The results of the optimized molecular structure are compared with the single crystal XRD data. The Mulliken and NBO charges are calculated and interpreted. Optical properties of the grown crystal are analyzed using UV-Vis spectrum. Energy gap determined by Tauc plot is in a good agreement with the theoretical value calculated from HOMO-LUMO energies. Thermogravimetric analysis is done to assess the thermal behavior of the ZHMD crystal. Various thermodynamic parameters are calculated using the basis set B3LYP. The first order hyperpolarizability values of ZHMD establish its NLO nature. The molecular electrostatic potential MEP of the molecule is obtained. Third-order nonlinear response is studied using Z-scan technique and the corresponding parameters such as absorption coefficient, refractive index and third-order susceptibility are determined.

Open access
Ultrasound assisted green synthesis of cerium oxide nanoparticles using Prosopis juliflora leaf extract and their structural, optical and antibacterial properties

Abstract

Cerium oxide nanoparticles (CONPs) were prepared using ultrasound assisted leaf extract of Prosopis juliflora acting as a reducing as well as stabilizing agent. The synthesized CONPs were characterized by ultraviolet-visible absorption spectroscopy (UV-Vis), particle size analyzer (PSA), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). From the UV-Vis analysis, the optical band gap of the prepared CONPs (Eg = 3.62 eV) was slightly increased as compared to the bulk ceria (Eg = 3.19 eV). The phytochemicals in the extract reduced the particle size to 3.7 nm ± 0.3 nm, as it is evident from the PSA. FT-IR results confirmed the Ce-O stretching bands by showing the peaks at 452 cm-1. The Raman spectrumshowed a characteristic peak shift for CONPs at 461.2 cm-1. XRD analysis revealed the cubic fluorite structure of the synthesizednanoparticles with the lattice constant, a of 5.415 Å and unit cell volume, V of 158.813 Å3. XPS signals were used to determine the concentration of Ce3+ and Ce4+ in the prepared CONPs and it was found that major amount of cerium exist in the Ce4+ state. HRTEM images showed spherical shaped particles with an average size of 15 nm. Furthermore, the antibacterial activity of the prepared CONPs was evaluated and their efficacies were compared with the conventional antibiotics using disc diffusion assay against a set of Gram positive (G+) bacteria (Staphylococcus aureus, Streptococcus pneumonia) and Gram negative (G-) bacteria (Pseudomonas aeruginosa, Proteus vulgaris). The results suggested that CONPs showed antibacterial activity with significant variations due to the differences in the membrane structure and cell wall composition among the two groups tested.

Open access
Influence of L-threonine on the growth, structural, optical, mechanical and nonlinear optical properties of tartaric acid single crystal

Abstract

Single crystals of pure and L-threonine added tartaric acid (LT/TA), organic nonlinear optical (NLO) materials were grown from their respective aqueous solution by slow evaporation method. The crystalline nature of the grown crystals was confirmed by powder X-ray diffraction analysis (XRD). UV-Vis-NIR absorption and transmission spectra revealed that the lower cut-off wavelength was around 281 nm and the crystals exhibited high transmission over visible and near IR region. The presence of the functional groups such as O–H, C–H, C–O, C=O in the grown crystals was confirmed by FT-IR analysis. CHN analysis was carried out to confirm the presence of L-threonine in the grown crystals. Microhardness study on the crystals revealed that the hardness number Hv increased with the applied load. The growth pattern of the crystals were analyzed through etching analysis from which the etch patterns in the shape of ‘step-triangle’ were observed. The second harmonic generation (SHG) properties of pure and L-threonine doped tartaric acid crystals were confirmed by Kurtz-Perry powder technique.

Open access