Search Results

81 - 90 of 136 items :

  • Materials Sciences x
Clear All
Growth, spectral, density functional theory (DFT) and Hirshfeld surface analysis on 4-aminopyridinium adipate monohydrate nonlinear optical single crystal

Abstract

4-aminopyridinium adipate monohydrate (4APA) was grown by slow evaporation solution growth technique. The functional groups in the grown crystal were identified from FT-IR spectral evaluation. The optical properties together with transmittance of the grown crystal were obtained from UV-Vis spectroscopic study. The mechanical and thermal properties of the grown crystal were studied using Vickers microhardness and TGA/DTA analyses, respectively. Microhardness test revealed that 4-aminopyridinium adipate monohydrate crystal is a soft category material. The density functional method (DFT) was performed using B3LYP with the 6-311G (d,p) basis set. The electronic charge distribution, reactivity of the molecules and the molecular electrostatic potential (MEP) of the grown crystal were analyzed using the B3LYP method. The intermolecular interactions that exist in the crystal structure of the 4APA have also been investigated by Hirshfeld surface analysis. The nonlinear optical properties of the 4APA crystal were confirmed by Kurtz-Perry technique.

Open access
Thermal and electrical properties of polyimide/PANI nanofiber composites prepared via in situ polymerization

Abstract

Polyimide/polyaniline nanofiber composites were prepared by in situ polymerization with various weight percentages of polyaniline (PANI) nanofibers. X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR), proved the successful preparation of PANI nanofiber composite films. In addition, thermal stability of PI/PANI nanofiber composites was superior relative to PI, having 10 % gravimetric loss in the range of 623 °C to 671 °C and glass transition temperature of 289 °C to 297 °C. Furthermore, the values of the loss tangent tanδ and AC conductivity σAC of the nanocomposite films were notably higher than those of pure polyimide. The addition of 5 wt.% to 15 wt.% PANI nanofiber filler enhanced the activation energy of PI composites from 0.37 eV to 0.34 eV.

Open access
Preparation of TiO2/Al-MCM-41 mesoporous materials from coal-series kaolin and photodegradation of methyl orange

Abstract

TiO2/Al-MCM-41 mesoporous materials were prepared via sol-gel method by loading titania onto Al-MCM-41 mesoporous molecular sieve by hydrothermal treatment from coal-series kaolin as raw material. The TiO2/Al-MCM-41 mesoporous materials were characterized by XRD, FT-IR, HRTEM, N2 adsorption-desorption and the photocatalytic degradation of methyl orange solution under visible light irradiation. The results showed that the TiO2/Al-MCM-41 mesoporous materials possessed a high surface area of 369.9–751.3 m2/g and a homogeneous pore diameters of 2.3–2.8 nm. The titania crystalline phase was anatase, and the particles size of TiO2 increased with TiO2 content. The Al-MCM-41 mesoporous materials exhibited excellent photodegradation activity under visible-light irradiation for methyl orange.

Open access
Microwave-assisted synthesis, characterization and photoluminescence of shuttle-like BaMoO4 microstructure

Abstract

Shuttle-like BaMoO4 microstructure has been successfully synthesized from Ba(N03)4H20 and Na2MoO2H2O as starting materials in ethylene glycol solvent containing 20 mL 5 M NaOH by microwave radiation at 180 W for 30 min. The as- synthesized BaMoO4 product was characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Raman spectrophotometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photolumines­cence (PL) spectroscopy. XRD patterns revealed that the products was tetragonal BaMoO4 phase. SEM and TEM characteriza­tion showed that the product had a shuttle-like BaMoO4 microstructure. PL of the shuttle-like BaMoO4 microstructure showed a maximum emission at 466 nm excited by 280 nm wavelength.

Open access
Soft chemical synthesis of nanosized zinc aluminate spinel from the thermolysis of different organic precursors

Abstract

A new method of preparation of nanocrystalline zinc aluminate (ZnAl2O4) powder is described in this paper. Different organic acids are used as template material and nitric acid as an oxidant. Single phase ZnAl2O4 spinel can be formed at a much lower temperature through this route which gives nanocrystalline powder with uniform particle size and morphology. The powders are characterized by thermo gravimetric analysis (TGA), X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FT-IR), BET surface area analysis and field emission scanning electron microscopy (FE-SEM). The average crystallite size of the single phase material was of 20 to 30 nm and the surface area was found to be 21 to 27 m2g−1.

Open access
Synthesis, growth, structural, thermal and third order nonlinear optical properties of novel organic single crystal: 4-methylpyridinium 3-nitrophthalate

Abstract

A novel 4-methylpyridinium 3-nitrophthalate (4MP3NP) was synthesized and the crystals were grown by using slow evaporation method. The structural data of the grown crystal was collected by single crystal X-ray diffraction. It revealed that the 4MP3NP crystal belongs to triclinic crystal system with a space group P1. Structure of the synthesized compound was established using SHELXL 97 program package. The crystalline nature and composition of the grown crystal was established using high resolution X-ray diffraction and FT-IR analyses. UV-Vis transmittance and photoluminescence studies revealed the optical transmission window and electronic transition mechanism of ions, respectively. The laser damage threshold of the grown crystal was estimated by Nd:YAG laser and these results were mutually related to specific heat capacity of the grown crystal. The third-order nonlinear optical susceptibility of the grown crystal was studied by Z-scan technique.

Open access
DBSA doped polypyrrole blended with Poly(4-styrenesulfonic acid) by mechanical mixing

Abstract

DBSA doped polypyrrole was prepared by In-situ chemical oxidative polymerization method. The reaction temperature was 0 to 20 °C. Different weight percentages of PSS (40 wt.%, 60 wt.% and 80 wt.%) were mechanically blended with a pestle in an agate mortar for 25 minutes by solid state mixing. The investigation of the blend focused on the optical, structural and morphological properties. SEM micrographs indicated that PSS was homogeneously distributed within DBSA doped PPy. FT-IR study confirmed the doped and blended dopants in the composite structure. UV-study revealed the π → π* transition in benzenoid rings of DBSA and presence of PSS. The semi-crystalline nature of the composites improved with increasing the weight percentage of PSS.

Open access
Nanosized MoO3 as a reusable heterogeneous catalyst for the synthesis of 2,6-bis(benzylidene)cyclohexanones

Abstract

Crystalline MoO3 nanoparticles were obtained by electrochemical synthesis process using tetrapropylammonium bromide as a stabilizer and structure-directing agent in ACN:THF(4:1) solvent. Formation of MoO3 nanoparticles took place at a constant supply current of 14 mA/cm2. These synthesized MoO3 nanoparticles were characterized by UV-Vis spectroscopy, FT-IR spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy (SEM). So prepared MoO3 nanoparticles were used as a heterogeneous catalyst for the synthesis of 2,6-bis(benzylidene)cyclohexanone derivatives. This protocol offers several advantages, such as simple work-up procedure, recyclability of the catalyst, excellent product yield in a short reaction time and purification of products with a non-chromatographic method.

Open access
Solid-solid intercalation and optical properties of VO-8-hydroxyquinoline decoration of layered silicate magadiite

Abstract

Coordination of vanadyl (VO2+) ions with 8-hydroxyquinoline (8Hq) in the interlayer space of layered silicate magadiite (mag) was realized by solid-solid intercalation. Composition, structure and morphology of this compound were studied by X-ray diffraction (XRD), Fourier-transform infrared spectrometry (FT-IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The obtained results indicate that the basal spacing of decorated mag increased after intercalation and suggest that VO-8Hq decorated into the interlayer of mag (VO-mag-8Hq) was successfully synthesized for the first time. Optical properties of VO-mag-8Hq were studied by ultraviolet-visible (UV-Vis) and photoluminescence spectroscopy (PL). The findings reveal that VO-8Hq complexes in the interlayer space exhibit extraordinary fluorescence properties and the confined space of mag influences the optical properties of VO-8Hq complexes.

Open access
Structural, spectral, electrical, Z-scan and HOMO LUMO studies on new 2-amino-6-methylpyridinium 2-hydroxybenzoate crystal

Abstract

New organic single crystals of 2-amino-6-methylpyridinium 2-hydroxybenzoate (2A6M2H) were grown by slow evaporation solution growth technique at room temperature. The grown crystal structure was studied using single crystal XRD. Crystalline nature and phases were confirmed by powder XRD analysis. FT-IR study was used to identify the functional groups present in the compound. UV-Vis study revealed that the lower cut off wavelength of the crystal is at 350 nm. The dielectric studies indicated the low value of dielectric loss at high frequency. Mechanical properties of the crystals were studied using Vickers microhardness test. The Z-Scan studies were conducted for the crystal using He–Ne laser.

Open access