Search Results

81 - 90 of 284 items :

Clear All
Lignosulfonate and silica as precursors of advanced composites

Abstract

Advanced silica/lignosulfonate composites were obtained using magnesium lignosulfonate and silica precipitated in a polar medium. For comparative purposes analogous synthesis was performed using commercial silica Aerosil®200. Lignosulfonates are waste products of paper industry and their application in new multifunctional materials is of great economic interest. The composites obtained were subjected to thorough characterization by determination of their physicochemical, dispersive-morphological and electrokinetic properties. Their particle size distribution was measured, SEM images were taken, FT-IR analysis and colorimetric study were made, thermal and electrokinetic stabilities and parameters of porous structure were also determined. The results can be of interest in further application studies

Open access
Green synthesis of silver nanoparticles using tannins

[1] Gould I.R., Lenhard J.R., Muenter A.A., Godleski S.A. Farid S., J. Am. Chem. Soc., 122 (2000), 11934. http://dx.doi.org/10.1021/ja002274s [2] You C.C., Chompoosor A., Rotello V.M., Nano Today, 2 (2007), 34. http://dx.doi.org/10.1016/S1748-0132(07)70085-3 [3] Schimd G., Chem. Rev., 92 (1992), 1709. http://dx.doi.org/10.1021/cr00016a002 [4] Deheer W.A., Rev. Mod. Phys., 65 (1993), 611. http://dx.doi.org/10.1103/RevModPhys.65.611 [5

Open access
Chemical modification of alginic acid by ultrasonic irradiation

]. Pereira, L., Sousa, A., Coelho, H., Use of FTIR, FT-Raman and 13C-NMR spectroscopy for identification of some seaweed phycocolloids, Biomolecular Engineering. 2003, 20, 223-228 [22]. Sartori, C, Finch, D. .S, Ralph B., Gilding, K. Polymer, 1997, 38 (1):43-51. [23]. Nivens, D. E., Ohman, D. E., Williamn, J., Franklin M. J., J Bacteriol. 2001;183:1047-57. [24]. Matsuhiro, B., Torres, S., Guerrero, J., Block structure in alginic acid from Lessonia vadosa (Laminariales, phaeophyta), J. Chil. Chem. Soc. 2007, 52, (1), 1-9.

Open access
Conventional versus ultrasound and microwave assisted synthesis: Some new environmentally friendly functionalized picolinium-based ionic liquids with potential antibacterial activity

Abstract

A green chemistry approach has been adopted for the synthesis of thirty-four new picolinium-based ionic liquids using microwave (MW) and ultrasound (US) irradiation as well as conventional thermal heating. Their structures were confirmed by FT-IR, 1H NMR, 13C NMR, 11B NMR, 19F NMR, 31P NMR, mass spectra and elemental analyses. The antimicrobial profile of the novel ionic liquids was evaluated and the minimum inhibitory concentration (MIC) showed their moderate to low antimicrobial activity against eight types of human pathogens.

Open access
Nontemplate synthesis, characterization and theoretical study of tetraazamacrocycles

Abstract

The syntheses of new tetraaza macrocyclic compounds of variable ring sizes by non-template methods and their characterization with the help of elemental analysis and spectroscopic techniques (FT-IR, 1H-NMR, and 13C-NMR) have been reported in detail. The vibrational frequencies determined experimentally are compared with those obtained theoretically from density functional theory (DFT) and Hartree-Fock (HF) calculations. The comparisons between the experimental and theoretical results indicate that B3LYP level with both the 3-21G(d) and 6-31G+(d,p) basis sets is able to provide satisfactory results for predicting IR properties. The frontier molecular orbital diagrams and molecular electrostatic potential maps of title compounds have been also calculated and visualized at the B3LYP/6-31G+(d,p) level of theory.

Open access
Recycling of styrofoam waste: synthesis, characterization and application of novel phenyl thiosemicarbazone surface

Abstract

An attempt has been made to recycle Styrofoam waste to a novel functional polymer, Phenyl thiosemicarbazone surface (PTS). Polystyrene (PS) obtained from Styrofoam waste was acetylated and then condensed to PTS by reacting it with 4-Phenyl-3-thiosemicarbazide ligand and characterized by FT-IR spectroscopy and elemental analysis. Synthesized PTS was applied successfully for the treatment of lead contaminated water by batch extraction method. Sorption variables were optimized (pH 8, adsorbent dose 53mg, initial Pb(II) ion concentration 10mgl-1 and agitation time 90min) by factorial design approach. Lead uptake by PTS was found much sensitive to the pH of Pb(II) ion solution. The maximum removal (99.61%) of Pb(II) ions was achieved at optimum conditions. The Langmuir and D-R isotherm study suggested the monolayer, favorable (RL=0.0001-0.01) and chemisorption (E=20.41±0.12kJmol-1) nature of the adsorption process. The sorption capacity of PTS was found to be 45.25±0.69mgg-1. The FT-IR spectroscopy study showed the involvement of nitrogen and sulphur of thiosemicarbazone moiety of PTS for the uptake of Pb(II) ions by five membered chelate formation.

Open access
PbS nanopowder – synthesis, characterization and antimicrobial activity

Abstract

Lead sulphide (PbS) nanopowder was synthesized by a simple soft chemical route using lead nitrate and thiourea as precursor salts. The as-synthesized nanopowder was characterized by XRD, SEM, EDX, FT-IR, PL, Raman and magnetic measurements. XRD studies reveal the polycrystalline nature of the powder. The powder exhibits face-centered cubic structure with a strong (2 0 0) preferential orientation. The presence of Pb and S in the powder is confirmed by energy dispersive X-ray analysis. The peaks observed at 1112 cm-1 and at 606 cm-1 in the FT-IR spectrum are related to heteropolar diatomic molecules of PbS. The Raman peak shift at 173 cm-1 might have originated from the combination of longitudinal and transverse acoustic phonon modes associated with PbS crystal. The M-H loop confirms the paramagnetic nature of the as-synthesized PbS nanopowder. The nanopowder has significant antimicrobial activity against certain bacteria and fungi strains which make it suitable as antimicrobial agent against pathogenic microorganisms.

Open access
Substitutional effect of copper on the cation distribution in cobalt chromium ferrites and their structural and magnetic properties

Abstract

A series of copper substituted cobalt chromium ferrites, CuxCo1 - xCr0.5Fe1.5O4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0) has been synthesized, by employing powder metallurgy method. Calcination of the samples has been carried out for 24 hours at 1100 °C. The resultant materials have been investigated by using a variety of techniques, including X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM)), scanning electron microscopy (SEM), and ultraviolet visible spectroscopy (UV-Vis). The XRD patterns confirmed that all compositions had a cubic spinel structure with a single phase and the lattice parameter was found to increase with increasing copper concentration. FT-IR spectroscopy has been used for studying the chemical bonds in the spinel ferrite. Shifting of the bands ν1 and ν2 has been observed. It has been revealed from VSM analysis that saturation magnetization and coercivity decrease with rising the Cu+2 doping. Magnetic properties have been explained on the basis of cation distribution. Scanning electron microscopy (SEM) has been used to study the surface morphology of prepared samples. UV-Vis analysis revealed the optical absorption of the samples. An increase in band gaps has been observed with increasing copper concentration in the sample.

Open access
Structural, optical and vibrational study of zinc copper ferrite nanocomposite prepared by exploding wire technique

Abstract

We have synthesized zinc-copper ferrite (ZCFO) employing exploding wire technique (EWT). The X-ray diffraction (XRD) data confirm the formation of single phase spinel ZCFO, which is in good agreement with Fourier transform infrared spectroscopy (FT-IR), UV-Vis, and Raman spectroscopic analyses. It is also clearly seen in the SEM micrographs that the grains in ZCFO ferrite are very rough, which allows adsorption of gas like oxygen and therefore, the material can behave as active sensing surface. The size range of the grains in prepared sample is of 200 nm to 500 nm. The FT-IR spectrum of the nanocomposite consists of two broad bands, one at 580.4 cm−1 due to M–O stretching mode at the tetrahedral site and the other at 400.7 cm−1 due to M–O stretching mode at the octahedral site. The nanoparticles show a UV-Vis absorption band in the wavelength region of 400 nm to 700 nm. The energy band gap for the prepared nanomaterial was estimated to be 3.16 eV. Thus, the ferrite nanocomposite prepared by EWT is optically active. According to present literature, Raman spectroscopy study on zinc-copper ferrite system has not been reported till date. By suitable attributing various Raman modes, we have further confirmed the formation of ZCFO nanophase through the present novel approach.

Open access
Mixed structure Zn(S,O) nanoparticles: synthesis and characterization

Abstract

In the present work, mixed structure Zn(S,O) nanoparticles have been synthesized using solution based chemical coprecipitation technique. Two different zinc sources (Zn(CH3COO)2·2H2O and ZnSO4·7H2O) and one sulfur source (CSNH2NH2) have been used as primary chemical precursors for the synthesis of the nanoparticles in the presence and absence of a capping agent (EDTA). The structural, morphological, compositional and optical properties of the nanoparticles have been analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transmission infra-red (FT-IR) and UV-Visible (UV-Vis) spectroscopy. XRD revealed the formation of mixed phases of c-ZnS, h-ZnS and h-ZnO in the synthesized nanoparticles. The surface morphology was analyzed from SEM micrographs which showed noticeable changes due to the effect of EDTA. EDX analysis confirmed the presence of zinc, sulfur and oxygen in Zn(S,O) nanoparticles. FT-IR spectra identified the presence of characteristic absorption peaks of ZnS and ZnO along with other functional group elements. The optical band gap values were found to vary from 4.16 eV to 4.40 eV for Zn(S,O) nanoparticles which are higher in comparison to the band gap values of bulk ZnS and ZnO. These higher band gap values may be attributed to the mixed structure of Zn(S,O) nanoparticles.

Open access