Search Results

You are looking at 81 - 90 of 298 items for :

Clear All
Open access

Božana Čolović, Danilo Kisić, Bojan Jokanović, Zlatko Rakočević, Ilija Nasov, Anka Trajkovska Petkoska and Vukoman Jokanović

Abstract

Thin films of titanium oxides, titanium oxynitrides and titanium nitrides were deposited on glass substrates by the methods of direct current (DC) and pulsed magnetron sputtering and cathodic arc evaporation. Phase analysis of the deposited films by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) showed the presence of phases with various Ti oxidative states, which indicated a high concentration of oxygen vacancies. The films morphology was investigated by scanning electron microscopy (SEM). Investigations of the films wettability, either with water or ethylene glycol, showed that it depends directly on the concentration of oxygen vacancies. The wettability mechanism was particularly discussed.

Open access

Marius Zaharia, Gabi Drochioiu, Gheorghiță Zbancioc and Vasile Robert Grădinaru

Abstract

The effects of 2,4-dinitrophenol (2,4-DNP) on the spectroscopic parameters (UV-Vis or FT-IR absorbance) or fluorescence emission of tryptophan and glycyl-tryptophan were studied. A quenching phenomenon of fluorescence was observed, attributed to interactions between the indole ring of the fluorophore and the aromatic ring of the quencher. The analysis of fluorescence spectra confirms that the quenching is dictated by 2,4-DNP concentration and pH. A combined mechanism of static and dynamic quenching was detected. The quenching phenomenon observed in this work could be employed to explain the mechanism of action of such compounds on large fluorescent peptides or proteins.

Open access

S. Abarna and G. Hirankumar

Abstract

Solid polymer electrolytes based on polyvinyl alcohol (PVA) doped with LiPF6 have been prepared using solution casting technique. Electrical properties of prepared electrolyte films were analyzed using AC impedance spectroscopy. The ionic conductivity was found to increase with increasing salt concentration. The maximum conductivity of 8.94 × 10−3 S·cm−1 was obtained at ambient temperature for the film containing 20 mol% of LiPF6. The conductivity enhancement was correlated to the enhancement of available charge carriers. The formation of a complex between the polymer and salt was confirmed by Fourier transform infrared spectroscopy (FT-IR). The optical nature of the polymer electrolyte films was analyzed through UV-Vis spectroscopy.

Open access

İbrahim Șen, Cem Burak Yildiz and Akın Azizoğlu

Abstract

The syntheses of new tetraaza macrocyclic compounds of variable ring sizes by non-template methods and their characterization with the help of elemental analysis and spectroscopic techniques (FT-IR, 1H-NMR, and 13C-NMR) have been reported in detail. The vibrational frequencies determined experimentally are compared with those obtained theoretically from density functional theory (DFT) and Hartree-Fock (HF) calculations. The comparisons between the experimental and theoretical results indicate that B3LYP level with both the 3-21G(d) and 6-31G+(d,p) basis sets is able to provide satisfactory results for predicting IR properties. The frontier molecular orbital diagrams and molecular electrostatic potential maps of title compounds have been also calculated and visualized at the B3LYP/6-31G+(d,p) level of theory.

Open access

K. Lee and G. Shin

Abstract

Hydroxyapatite (HA) is a material with outstanding biocompatibility. It is chemically similar to natural bone tissue, and has therefore been favored for use as a coating material for dental and orthopedic implants. In this study, RF magnetron sputtering was applied for HA coating. And Alkali treatment was performed in a 5 M NaOH solution at 60°C. The coated HA thin film was heat-treated at a range of temperatures from 300 to 600°C. The morphological characterization and crystal structures of the coated specimens were then obtained via FE-SEM, XRD, and FT-IR. The amorphous thin film obtained on hydrothermally treated nanorods transformed into a crystalline thin film after the heat treatment. The change in the phase transformation, with an enhanced crystallinity, showed a reduced wettability. The hydrothermally treated nanorods with an amorphous thin film, on the other hand, showed an outstanding wettability. The HA thin film perpendicularly coated the nanorods in the upper and inner parts via RF magnetron sputtering, and the FT-IR results confirmed that the molecular bonding of the coated film had an HA structure.

Open access

Yufeng Ma, Xiang Geng, Xi Zhang, Chunpeng Wang and Fuxiang Chu

Abstract

A novel 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) graft γ-amino propyl triethoxy silane (KH550) was synthesized and introduced on the surface of wood fiber. Finally DOPO-g-KH550 treated wood fiber (DKTWF) was used to prepare DKTWF composite phenolic foams (DKTWFCPF). The structures of DOPO-g- KH550 was acknowledged by Fourier transform infrared (FT-IR) and nuclear magnetic resonance (1H-NMR). The structures of DKTWF were confirmed by FT-IR. Compared with wood fiber, the diffraction peaks’ position was basically unchanged, but the crystallinity was slightly increased and thermal stability were dramatically improved, T5% and Tmax increased by 21.9o and 36.1o respectively. But the char yield (800o) was slightly reduced. With the dosage of DKWF, there were different degrees of improvement including the mechanical properties, flame retardancy and microstructure of DKTWFCPF. Comprehensive analysis, the interfacial compatibility was significantly improved between DKTWF and phenolic resin, and the suitable content of DKTWF was 4%.

Open access

Ali N. Siyal, Saima Q. Memon and M.Y. Khuhawar

Abstract

An attempt has been made to recycle Styrofoam waste to a novel functional polymer, Phenyl thiosemicarbazone surface (PTS). Polystyrene (PS) obtained from Styrofoam waste was acetylated and then condensed to PTS by reacting it with 4-Phenyl-3-thiosemicarbazide ligand and characterized by FT-IR spectroscopy and elemental analysis. Synthesized PTS was applied successfully for the treatment of lead contaminated water by batch extraction method. Sorption variables were optimized (pH 8, adsorbent dose 53mg, initial Pb(II) ion concentration 10mgl-1 and agitation time 90min) by factorial design approach. Lead uptake by PTS was found much sensitive to the pH of Pb(II) ion solution. The maximum removal (99.61%) of Pb(II) ions was achieved at optimum conditions. The Langmuir and D-R isotherm study suggested the monolayer, favorable (RL=0.0001-0.01) and chemisorption (E=20.41±0.12kJmol-1) nature of the adsorption process. The sorption capacity of PTS was found to be 45.25±0.69mgg-1. The FT-IR spectroscopy study showed the involvement of nitrogen and sulphur of thiosemicarbazone moiety of PTS for the uptake of Pb(II) ions by five membered chelate formation.

Open access

Surendra Singh, Anshuman Sahai, S.C. Katyal and Navendu Goswami

Abstract

We have synthesized zinc-copper ferrite (ZCFO) employing exploding wire technique (EWT). The X-ray diffraction (XRD) data confirm the formation of single phase spinel ZCFO, which is in good agreement with Fourier transform infrared spectroscopy (FT-IR), UV-Vis, and Raman spectroscopic analyses. It is also clearly seen in the SEM micrographs that the grains in ZCFO ferrite are very rough, which allows adsorption of gas like oxygen and therefore, the material can behave as active sensing surface. The size range of the grains in prepared sample is of 200 nm to 500 nm. The FT-IR spectrum of the nanocomposite consists of two broad bands, one at 580.4 cm−1 due to M–O stretching mode at the tetrahedral site and the other at 400.7 cm−1 due to M–O stretching mode at the octahedral site. The nanoparticles show a UV-Vis absorption band in the wavelength region of 400 nm to 700 nm. The energy band gap for the prepared nanomaterial was estimated to be 3.16 eV. Thus, the ferrite nanocomposite prepared by EWT is optically active. According to present literature, Raman spectroscopy study on zinc-copper ferrite system has not been reported till date. By suitable attributing various Raman modes, we have further confirmed the formation of ZCFO nanophase through the present novel approach.

Open access

Hajnal Kelemen, Gabriel Hancu, Serban Andrei Gâz-Florea, Eniko Nemes-Nagy, Lajos Attila Papp and Eleonora Mircia

Macrocycl Chem. 2016;84(3-4):189-196. 20. Wang JH, Cai Z – Investigation of inclusion complex of miconazole nitrate with β-cyclodextrin. Carbohydrate polymers. 2008;72(2): 255-260. 21. Gupta HKK – Solid state compatibility studies of miconazole using thermal and spectroscopic methods. Adv Anal Chem. 2015;5(3):51-55. 22. Barillaro V, Dive G, Ziémons et al. – Theoretical and experimental vibrational study of miconazole and its dimers with organic acids: Application to the IR characterization of its inclusion complexes with cyclodextrins. . Int J Pharm

Open access

M. Suganya and A.R. Balu

Abstract

Lead sulphide (PbS) nanopowder was synthesized by a simple soft chemical route using lead nitrate and thiourea as precursor salts. The as-synthesized nanopowder was characterized by XRD, SEM, EDX, FT-IR, PL, Raman and magnetic measurements. XRD studies reveal the polycrystalline nature of the powder. The powder exhibits face-centered cubic structure with a strong (2 0 0) preferential orientation. The presence of Pb and S in the powder is confirmed by energy dispersive X-ray analysis. The peaks observed at 1112 cm-1 and at 606 cm-1 in the FT-IR spectrum are related to heteropolar diatomic molecules of PbS. The Raman peak shift at 173 cm-1 might have originated from the combination of longitudinal and transverse acoustic phonon modes associated with PbS crystal. The M-H loop confirms the paramagnetic nature of the as-synthesized PbS nanopowder. The nanopowder has significant antimicrobial activity against certain bacteria and fungi strains which make it suitable as antimicrobial agent against pathogenic microorganisms.