Search Results

81 - 90 of 90 items :

  • "technology" x
  • Astronomy and Astrophysics x
Clear All

., Cassayre, L., Malmbeck, R., Harrison, M., de Angelis, G., Espartero, A., Bouvet, S., & Ouvrier, N. (2009). ACSEPT-Partitioning technologies and actinide science: towards pilot facilities in Europe. Nucl. Eng. Des., 241, 3425-3427. DOI: 10.1016/j.nucengdes. 2011.03.011.1. 6. Mincher, B. J., Modolo, G., & Mezyk, S. P. (2010). The effects of radiation chemistry on solvent extraction 4: separation of the trivalent actinides and considerations for radiation-resistant solvent system. Solvent Extr. Ion Exch., 28, 415-436. DOI: 10.1080/07366299.2010.485548. 7. Pikaev, A. K

References 1. OECD. (2004). Pyrochemical separations in nuclear applications. Status report of OECD. 2. Long, J. T. (1978). Engineering for nuclear fuel reprocessing. 2nd ed. (pp. 242-272). American Nuclear Society. 3. Laidler, J. J., Battles, J. E., Miller, W. E., Ackerman, J. P., & Carls, E. L. (1997). Development of pyroprocessing technology. Prog. Nucl. Energy, 31(1/2), 131. 4. Bettis, E. S., & Robertson, R. C. (1970). The design and performance features of a single-fl uid molten salt breeder reactor. Nucl. Appl. Technol., 8, 190-207. 5. Whatley, M. E

References 1. Mincher, B. J., Modolo, G., & Mezyk, S. P. (2009). The effects of radiation chemistry on solvent extraction: 1. Conditions in acidic solution and a review of TBP radiolysis. Solvent Extr. Ion Exch., 27(1), 1-25. DOI: 10.1080/07366290802544767. 2. Tahraoui, A., & Morris, J. H. (1995). Decomposition of solvent extraction media during nuclear reprocessing: Literature review. Sep. Sci. Technol., 30(13), 2603-2630. DOI: 10.1080/01496399508013706. 3. Schulz, W. W., & Navratil, J. D. (1987). Science and technology of tributyl phosphate. Boca Raton, FL, USA

., Lista, F., & De Sanctis, S. (2012). Interlaboratory comparison on cytokinesis-block micronucleus assay for X-ray calibration curve and dose prediction in Italy. Effects of Ionizing Radiation Exposure and Countermeasures: Current Status and Future Perspectives S&T. In T. C. Pellmar (Ed.), Biological effects of ionizing radiation exposure and countermeasures: Current status and future perspectives (paper no. 22). NATO Science and Technology Organization. (STO-MP-HFM-223). 9. Martin, P. R., Berdychevski, R. E., Subramanian, U., Blakely, W. F., & Prasanna, P. G. S. (2007

China (Series B), 45(Suppl.), 11-19. (in Chinese with English abstract). 15. Yang, Y., Wu, X., & Jiang, Z. (2005). Radioactivity concentrations in soils of the Xiazhuang granite area, China. Appl. Radiat. Isot., 63(2), 255-259. DOI: 10.1016/j.apradiso.2005.02.011. 16. Dai, M. (2006). Uranium resources potential and its prospecting direction in Jiangxi Province. East China Institute of Technology, 2006(Suppl.), 12-18. (in Chinese with English abstract). 17. Liu, Y., Gu, L., & Hou, Z. (2002). Airborne radiometric survey. Geophys. Geochem. Explor., 26(4), 250-252. (in

building materials in Vojvodina. In Proceedings of the Fifth International Symposium and Exhibition on Environmental Contamination in Central and Eastern Europe. Prague. 7. Popović, D., & Todorović, D. (2006). Radon indoor concentrations and activity of radionuclides in building materials in Serbia. Facta Universitatis, Series: Physics, Chemistry and Technology, 4, 11-20. 8. Krstić, D., Nikezić, D., Stevanović, N., & Vučić, D. (2007). Radioactivity of some domestic and imported building materials from south eastern Europe. Radiat. Meas., 42, 1731-1736. 9. Ujić, P

. International Commission on Radiation Units and Measurements. (1993). Quantities and units in radiation protection dosimetry . Bethesda, MD: ICRU. (ICRU Report 51). 19. International Commission on Radiation Units and Measurements. (2001). Determination of operational dose equivalent quantities for neutrons . ICRU Report 66, Journal of the ICRU, 1 (2). Ashford, UK: Nuclear Technology Publishing. 20. Golnik, N. (1996). Recombination methods in the dosimetry of mixed radiation . Otwock-Świerk: Institute of Atomic Energy. (IAE-20/A). 21. Zielczynski, M., & Golnik, N. (1994

. New York: Academic Press. 26. International Atomic Energy Agency. (2009). Nuclear techniques for preservation of cultural heritage artefacts . Vienna: IAEA. (TECP-RER 8/015). 27. International Atomic Energy Agency. (2011). Nuclear techniques for cultural heritage research . Vienna: IAEA. (Radiation Technology Series no. 2). 28. Adamo, M., Baccaro, S., & Cemmi, A. (2015). Radiation processing for bio-deteriorated archived materials and for consolidation of porous artefacts . Rome: ENEA. (Report RT/2015/5/ENEA). 29. Głuszewski, W., Zagórski, Z. P., Tran, Q. K

technology. Rep. Pract. Oncol. Radiother., 19, 259-266. DOI: 10.1016/j.rpor.2013.09.002. 3. Pan, T., Lee, T. Y., Rietzel, E., & Chen, G. T. (2004). 4D-CT imaging of a volume infl uenced by respiratory motion on multi-slice CT. Med. Phys., 31, 333-3340. DOI: 10.1118/1.1639993. 4. Ehler, E. D., & Tomé, W. A. (2009). Step and shoot IMRT to mobile targets and techniques to mitigate the interplay effect. Phys. Med. Biol., 54, 4311-4324. DOI: 10.1088/0031-9155/54/13/023. 5. Nelms, B. E., Opp, D., Zhang, G., Moros, E., & Feygelman, V. (2014). Motion as perturbation. II

References 1. Dupasquier, A., Mills Jr, A. P., & Brusa, R. (Eds.). (2010). Physics with many positrons . 174th Proceedings of the International School of Physics “Enrico Fermi” . Amsterdam: IOS Press. 2. Brusa, R. S., Macchi, C., Mariazzi, S., Karwasz, G. P., Scarel, G., & Fanciulli, M. (2007). Innovative dielectrics for semiconductor technology. Radiat. Phys. Chem ., 76 (2), 189–194. DOI: 10.1016/j.radphyschem.2006.03.033. 3. Karwasz, G. P., Zecca, A., Brusa, R. S., & Pliszka, D. (2004). Application of positron annihilation techniques for semiconductor