Search Results

81 - 90 of 249 items :

  • "performance" x
  • Control Engineering, Metrology and Testing x
Clear All
DT-CWT Robust Filtering Algorithm for The Extraction of Reference and Waviness from 3-D Nano Scalar Surfaces

Abstract

Dual tree complex wavelet transform (DT-CWT) exhibits superiority of shift invariance, directional selectivity, perfect reconstruction (PR), and limited redundancy and can effectively separate various surface components. However, in nano scale the morphology contains pits and convexities and is more complex to characterize. This paper presents an improved approach which can simultaneously separate reference and waviness and allows an image to remain robust against abnormal signals. We included a bilateral filtering (BF) stage in DT-CWT to solve imaging problems. In order to verify the feasibility of the new method and to test its performance we used a computer simulation based on three generations of Wavelet and Improved DT-CWT and we conducted two case studies. Our results show that the improved DT-CWT not only enhances the robustness filtering under the conditions of abnormal interference, but also possesses accuracy and reliability of the reference and waviness from the 3-D nano scalar surfaces.

Open access
Frequency and parameter estimation of multi-sinusoidal signal

Abstract

Estimating the fundamental frequency and harmonic parameters is basic for signal modeling in a power supply system. This paper presents a complexity-reduced algorithm for signal reconstruction in the time domain from irregularly spaced sampling values. Differing from the existing parameter estimation algorithms, either in power quality monitoring or in harmonic compensation, the proposed algorithm enables a simultaneous estimation of the fundamental frequency, the amplitudes and phases of harmonic waves. The reduction in complexity is achieved owing to completely new analytical and summarized expressions that enable a quick estimation at a low numerical error. It is proved that the estimation performance of the proposed algorithm can attain Cramer-Rao lower bound (CRLB) for sufficiently high signal-to-noise ratios. The proposed algorithm can be applied in signal reconstruction, spectral estimation, system identification, as well as in other important signal processing problems. The simulation and experimental results verify the effectiveness of the proposed algorithm.

Open access
Unsupervised Pathological Area Extraction using 3D T2 and FLAIR MR Images

Abstract

This work discusses fully automated extraction of brain tumor and edema in 3D MR volumes. The goal of this work is the extraction of the whole pathological area using such an algorithm that does not require a human intervention. For the good visibility of these kinds of tissues both T2-weighted and FLAIR images were used. The proposed method was tested on 80 MR volumes of publicly available BRATS database, which contains high and low grade gliomas, both real and simulated. The performance was evaluated by the Dice coefficient, where the results were differentiated between high and low grade and real and simulated gliomas. The method reached promising results for all of the combinations of images: real high grade (0.73 ± 0.20), real low grade (0.81 ± 0.06), simulated high grade (0.81 ± 0.14), and simulated low grade (0.81 ± 0.04).

Open access
Dsmk-Means “Density-Based Split-And-Merge K-Means Clustering Algorithm”

Abstract

Clustering is widely used to explore and understand large collections of data. K-means clustering method is one of the most popular approaches due to its ease of use and simplicity to implement. This paper introduces Density-based Split- and -Merge K-means clustering Algorithm (DSMK-means), which is developed to address stability problems of standard K-means clustering algorithm, and to improve the performance of clustering when dealing with datasets that contain clusters with different complex shapes and noise or outliers. Based on a set of many experiments, this paper concluded that developed algorithms “DSMK-means” are more capable of finding high accuracy results compared with other algorithms especially as they can process datasets containing clusters with different shapes, densities, or those with outliers and noise.

Open access
Segmentation and Edge Detection Based on Modified ant Colony Optimization for Iris Image Processing

Abstract

Ant colony optimization (stocktickerACO) is a meta-heuristic algorithm inspired by food searching behavior of real ants. Recently stocktickerACO has been widely used in digital image processing. When artificial ants move in a discrete habitat like an image, they deposit pheromone in their prior position. Simultaneously, vaporizing of pheromone in each iteration step avoids from falling in the local minima trap. Iris recognition because of its great dependability and non-invasion has various applications. simulation results demonstrate stocktickerACO algorithm can effectively extract the iris texture. Also it is not sensitive to nuisance factors. Moreover, stocktickerACO in this research preserves details of the various synthetic and real images. Performance of ACO in iris segmentation is compared with operation of traditional approaches such as canny, robert, and sobel edge detections. Experimental results reveal high quality and quite promising of stocktickerACO to segment images with irregular and complex structures.

Open access
Simulation and Experimental Evaluation of the EKF Simultaneous Localization and Mapping Algorithm on the Wifibot Mobile Robot

Abstract

In recent years, autonomous navigation for mobile robots has been considered a highly active research field. Within this context, we are interested to apply the Simultaneous Localization And Mapping (SLAM) approach for a wheeled mobile robot. The Extended Kalman Filter has been chosen to perform the SLAM algorithm. In this work, we explicit all steps of the approach. Performances of the developed algorithm have been assessed through simulation in the case of a small scale map. Then, we present several experiments on a real robot that are proceeded in order to exploit a programmed SLAM unit and to generate the navigation map. Based on experimental results, simulation of the SLAM method in the case of a large scale map is then realized. Obtained results are exploited in order to evaluate and compare the algorithm’s consistency and robustness for both cases.

Open access
Magnetic Resonance Super-resolution Imaging Measurement with Dictionary-optimized Sparse Learning

Abstract

Magnetic Resonance Super-resolution Imaging Measurement (MRIM) is an effective way of measuring materials. MRIM has wide applications in physics, chemistry, biology, geology, medical and material science, especially in medical diagnosis. It is feasible to improve the resolution of MR imaging through increasing radiation intensity, but the high radiation intensity and the longtime of magnetic field harm the human body. Thus, in the practical applications the resolution of hardware imaging reaches the limitation of resolution. Software-based super-resolution technology is effective to improve the resolution of image. This work proposes a framework of dictionary-optimized sparse learning based MR super-resolution method. The framework is to solve the problem of sample selection for dictionary learning of sparse reconstruction. The textural complexity-based image quality representation is proposed to choose the optimal samples for dictionary learning. Comprehensive experiments show that the dictionary-optimized sparse learning improves the performance of sparse representation.

Open access
Improved Real-time Denoising Method Based on Lifting Wavelet Transform

Abstract

Signal denoising can not only enhance the signal to noise ratio (SNR) but also reduce the effect of noise. In order to satisfy the requirements of real-time signal denoising, an improved semisoft shrinkage real-time denoising method based on lifting wavelet transform was proposed. The moving data window technology realizes the real-time wavelet denoising, which employs wavelet transform based on lifting scheme to reduce computational complexity. Also hyperbolic threshold function and recursive threshold computing can ensure the dynamic characteristics of the system, in addition, it can improve the real-time calculating efficiency as well. The simulation results show that the semisoft shrinkage real-time denoising method has quite a good performance in comparison to the traditional methods, namely soft-thresholding and hard-thresholding. Therefore, this method can solve more practical engineering problems.

Open access
Advanced Supervision Of Oil Wells Based On Soft Computing Techniques

Abstract

In this work is presented a hybrid intelligent model of supervision based on Evolutionary Computation and Fuzzy Systems to improve the performance of the Oil Industry, which is used for Operational Diagnosis in petroleum wells based on the gas lift (GL) method. The model is composed by two parts: a Multilayer Fuzzy System to identify the operational scenarios in an oil well and a genetic algorithm to maximize the production of oil and minimize the flow of gas injection, based on the restrictions of the process and the operational cost of production.

Additionally, the first layers of the Multilayer Fuzzy System have specific tasks: the detection of operational failures, and the identification of the rate of gas that the well requires for production. In this way, our hybrid intelligent model implements supervision and control tasks.

Open access
Optimization of Traveling Salesman Problem Using Affinity Propagation Clustering and Genetic Algorithm

Abstract

Combinatorial optimization problems, such as travel salesman problem, are usually NP-hard and the solution space of this problem is very large. Therefore the set of feasible solutions cannot be evaluated one by one. The simple genetic algorithm is one of the most used evolutionary computation algorithms, that give a good solution for TSP, however, it takes much computational time. In this paper, Affinity Propagation Clustering Technique (AP) is used to optimize the performance of the Genetic Algorithm (GA) for solving TSP. The core idea, which is clustering cities into smaller clusters and solving each cluster using GA separately, thus the access to the optimal solution will be in less computational time. Numerical experiments show that the proposed algorithm can give a good results for TSP problem more than the simple GA.

Open access