Search Results

71 - 80 of 142 items :

  • "efficiency" x
  • Process Engineering x
Clear All
Effect of Gluconacetobacter xylinus cultivation conditions on the selected properties of bacterial cellulose

Abstract

The aim of the study was to analyze the changes in the parameters of bacterial cultures and bacterial cellulose (BC) synthesized by four reference strains of Gluconacetobacter xylinus during 31-day cultivation in stationary conditions. The study showed that the most visible changes in the analyzed parameters of BC, regardless of the bacterial strain used for their synthesis, were observed in the first 10–14 days of the experiment. It was also revealed, that among parameters showing dependence associated with the particular bacterial strain were the rate and period of BC synthesis, the growth rate of bacteria anchored to the cellulose fibrils, the capacity to absorb water and the water release rate. The results presented in this work may be useful in the selection of optimum culturing conditions and period from the point of view of good efficiency of the cellulose synthesis process.

Open access
Use of fly ash and fly ash agglomerates for As(III) adsorption from aqueous solution

Abstract

The objective of the present study is to assess the efficiency of fly ash and fly ash agglomerates to remove arsenic(III) from aqueous solution. The maximum static uptakes were achieved to be 13.5 and 5.7 mgAs(III)/adsorbent for nonagglomerated material and agglomerated one, respectively. Isotherm studies showed good fit with the Langmuir (fly ash) and the Freundlich (fly ash agglomerates) isotherm models. Kinetic studies indicated that the sorption of arsenic on fly ash and its agglomerates follows the pseudo-second-order (PSO) chemisorption model (R2 = 0.999). Thermodynamic parameters revealed an endothermic nature of As(III) adsorption on such adsorbents. The adsorption results confirmed that fly ash and its agglomerates can be used for As(III) removal from aqueous solutions. Fly ash can adsorb more arsenic(III) than agglomerates, which are easier to use, because this material is less dusty and easier to separate from solution.

Open access
Influence of titanium dioxide modification on the antibacterial properties

Abstract

Antibacterial properties of 15 titania photocatalysts, mono- and dual-modified with nitrogen and carbon were examined. Amorphous TiO2, supplied by Azoty Group Chemical Factory Police S.A., was used as titania source (Ar-TiO2, C-TiO2, N-TiO2 and N,C-TiO2 calcined at 300°C, 400°C, 500°C, 600°C, 700°C). The disinfection ability was examined against Escherichia coli K12 under irradiation with UV and artificial sunlight and in dark conditions. It has been found the development of new photocatalysts with enhanced interaction ability with microorganisms might be a useful strategy to improve disinfection method conducted under artificial sunlight irradiation. The efficiency of disinfection process conducted under artificial sunlight irradiation with carbon (C-TiO2) and carbon/nitrogen (N,C-TiO2) photocatalysts was similar as obtained under UV irradiation. Furthermore, during dark incubation, any toxicity of the photocatalyst was noted.

Open access
Bio-chemical methods in wasteprocessing

Bio-chemical methods in wasteprocessing

The mineral biotechnologies, the domain of which is primary raw material processing, are increasingly diversifying into some metallurgical areas. The presented results of the research carried out with metallurgical wastes from aluminium production, lead waste remaking and desulphurization zinc-ferrite-based sorbents regeneration prove the possibility of the use of bio-chemical methods. The results obtained and the proposed technologies applying bio-chemical processes enable a complex processing and use of waste sludge from aluminium production and the use of wastes from matte-based copper production for the production of hematite pigments. The use of microorganisms in the desulphurization sorbent regeneration processes allows to increase sorbent's efficiency and its repeated recycling.

Open access
Epoxidation of allyl-glycidyl ether with hydrogen peroxide over Ti-SBA-15 catalyst and in methanol medium

Abstract

This work presents the studies on the epoxidation of allyl-glycidyl ether (AGE) over the Ti-SBA-15 catalyst. In these studies an aqueous hydrogen peroxide was used as an oxidizing agent and as a solvent methanol was applied. The studies on the influence the following parameters: temperature (20–80°C), molar ratio of AGE/H2O2 (1:1.5–5:1), methanol concentration (10–90 wt%), catalyst content (1–9 wt%) and reaction time (15–240 min.) were carried out and the most favourable values of these parameters were chosen (temperature 80°C, molar ratio of AGE/H2O2 = 5:1, methanol concentration 30 wt%, catalyst content 3 wt% and the reaction time 240 min.). At these conditions the functions describing the process reached the following values: the selectivity of diglycidyl ether (DGE) 9.2 mol%, the conversion of AGE 13.9 mol% and the efficiency of H2O2 conversion 89.9 mol%.

Open access
Preparation, Characterization, and Application of N,S-codoped TiO2/Montmorillonite Nanocomposite for the Photocatalytic Degradation of Ciprofl oxacin: Optimization by Response Surface Methodology

Abstract

An N,S-codoped TiO2/Montmorillonite nanocomposite, as a photocatalyst, was synthesized in the sol-gel method and used for the degradation of ciprofloxacin (Cip) in an aqueous solution. N,S-codoped TiO2/Montmorillonte was characterized by powder X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), and X-ray fluorescence (XRF) analyzes. A central composite design (CCD) was used to optimize the variables for the removal of Cip by the N,S-codoped TiO2/Montmorillonite. A maximum decomposition of 92% of Cip was achieved in optimum conditions. The band gap value for the nanocomposite was 2.77 eV. Moreover, with the use of nanocomposite in the four consecutive runs, the final removal efficiency was 66%. The results show that the N,S-codoped TiO2/ Montmorillonite under simulated sunlight irradiation can be applied as an effective photocatalyst for the removal of Cip from aqueous solutions.

Open access
Numerical analysis of a serial connection of two staged SOFC stacks in a CHP system fed by methane using Aspen TECH

Abstract

The objective of the study was to develop a steady-state system model in Aspen TECH using user-defined subroutines to predict the SOFC electrochemical performance. In order to achieve high overall fuel utilization and thus high electrical efficiency, a concept of Combined Heat and Power system with two-stage SOFC stacks of different number of cells was analyzed. The concept of two-stage SOFC stacks based system was developed in the framework of the FP7 EU-funded project STAGE-SOFC. The model was validated against data gathered during the operation of the proof-of-concept showing good agreement with the comparative simulation data. Following model validation, further simulations were performed for different values of fuel utilization to analyze its influence on system electrical performance. Simulation results showed that the concept of two-stage SOFC stacks configuration was viable and reliable. The model can be useful for development the optimal control strategy for system under safe conditions.

Open access
Solid inorganic peroxy compounds in environmental protection

Solid inorganic peroxy compounds in environmental protection

The paper presents a solid inorganic peroxy compounds description (calcium peroxide, magnesium peroxide and sodium percarbonate) focused on the properties and environmental application, particularly for the degradation of polycyclic aromatic hydrocarbons (PAHs) and phenols in soil environment. Modern technological processes require the use of compounds that are safe for the environment, non-toxic, easily degradable to the products, which themselves have no adverse environmental effect. Peroxides, as the chemical compounds, produce an effect on the enzymatic activity of the environment into which they are introduced. A good indicator of the activity of soil, bottom sediment or activated sludge, may be the dehydrogenase activity, which is a reflection of the general physiological state of microorganisms. Peroxides can be applied both in a pure form, as well as in mixtures with certain other groups of compounds. To enhance their efficiency they can be mixed with nitrogen, phosphorus or potassium carrying compounds.

Open access
Methane fermentation of poultry slaughterhouse waste

Methane fermentation of poultry slaughterhouse waste

One of the alternative methods for the treatment of animal by-products is their utilization in biological processes with a simultaneous production of energy-rich biogas. The results of the investigations of methane fermentation of animal waste are discussed in the study. The methane fermentation was carried out at 35°C. The substrates used in the experiments included poultry heads and muscle tissue. Furthermore, the fermentation residues subjected previously to hydrothermal processing were used as a substrate. The suspension of those substrates in the initial concentration range from 1 g TOC/dm3 to 11 g TOC/dm3 was used in the process. Additionally, the effect of the preliminary stage of hydrothermal substrate processing on methane fermentation efficiency was assessed. Poultry waste was subjected to thermohydrolysis at the temperature from 100°C to 300°C and pressure up to 9.0 MPa. The efficiency of the methane fermentation was estimated on the basis of biogas generated in the process. The biogas production was between 0.17 Ndm3/g TOC and 1.53 Ndm3/g TOC. In the case of poultry heads, a beneficial impact of hydrothermal processing at the temperatures from 100°C to 175°C was confirmed. For poultry meat the preliminary thermohydrolysis brought about a decrease of methane fraction in the biogas evolved. The preliminary hydrothermal processing made it possible to meet the requirements of legal regulations for the hygienization of by-products of animal origin. The obtained results allowed us to identify conditions under which the methane fermentation was carried out and which ensured a high level of methanization.

Open access
Mixing system for highly concentrated fine-grained suspensions

References Moravec, J. & Rieger, F. (2008). Rheological behavior of high-concentrated fine-grained suspension. Czasopismo Techniczne 5-M/2008, 231-238. Rieger, F. & Moravec, J. (2007). Rheometry of the Fine Concentrated Suspensions. In Teoretičeskie osnovy sozdanija, optimizacii i upravlenija energo-i resursosberegajuščimi processami i oborudovaniem - Sbornik trudov, 2007, (pp. 75-83). Ivanovo, Russia. [in Russian]. Rieger, F. (1993). Efficiency of agitators while mixing of

Open access