Search Results

61 - 70 of 283 items :

Clear All
Batch removal of Pb (ΙΙ) ions from aqueous medium using gamma-Al2O3 nanoparticles/ethyl cellulose adsorbent fabricated via electrospinning method: An equilibrium isotherm and characterization study

. Chem . 54 (1982) 2201–2218. DOI: 10.1351/pac198557040603. 49. Liu, D., Que, G.H., Wang, Z.X., Yan, Z.F. In situ FT-IR study of CO and H 2 adsorption on a Pt/Al2O 3 catalyst, Catal. Today. 68 (2001) 155–160. DOI: 10.1016/S0920-5861(01)00306-6. 50. Alvar, E.N., Rezaei, M. & Alvar, H.N. Synthesis of mesoporous nanocrystalline MgAl 2 O 4 spinel via surfactant assisted precipitation route. Powder Technol. 198 (2010) 275–278. DOI: 10.1016/j.powtec.2009.11.019. 51. Kao, L.H. & Hsu, T.C. Silica template synthesis of ordered mesoporous carbon thick films

Open access
Synthesis and phosphorescent properties of the copolymers of N-vinylcarbazole, methyl methacrylate and iridium complex

Abstract

The copolymers containing carbazole unit and iridium complexes, such as (Ir(bpy)2Cl, Ir(mbpy)2Cl and Ir(Brbpy)2Cl, were synthesized via radical copolymerization of N-vinylcarbazole, methyl methacrylate and iridium complex. The synthesized copolymers were characterized by FT-IR, UV-Vis absorption spectroscopy and photoluminescence (PL) spectroscopy, respectively. According to the results, the copolymers (Ir(Brbpy)2Cl/PVK and Ir(mbpy)2Cl/PVK) exhibit yellow phosphorescence with an emission peak at around 553 nm under UV-visible light in the solid state. The results also reveal almost complete energy transfer from the host carbazole segments to the guest Ir complex in the copolymer film when the Ir content reaches 1.0 wt.%. The synthesized copolymers are good candidates as blue or yellow phosphorescent materials for PLED applications.

Open access
Investigation on room temperature photoluminescence of pure and aluminum doped zinc oxide nanoparticles

Abstract

Pure and aluminum doped zinc oxide nanoparticles were prepared by soft chemical method. The prepared nanoparticles were characterized by XRD, SEM-EDAX, UV-Vis, PL and FT-IR studies. XRD patterns revealed that the nanoparticles were crystallized in hexagonal wurtzite structure with an average particle size of 19 nm to 26 nm. The surface morphology was explored using SEM micrographs. The incorporation of aluminum was confirmed by EDAX and FT-IR studies. The band gaps of the particles were found from 3.48 eV to 3.53 eV through UV-Vis spectral studies. The defect related mechanism was investigated using PL measurements. The chemical functional groups in FT-IR spectra proved the formation of pure and aluminum doped zinc oxide nanoparticles.

Open access
Thermal behaviour of light lanthanide(III) complexes with 2,3-pyridinedicarboxylic acid

Abstract

The lanthanide(III) complexes with 2,3-pyridinedicarboxylate ligand (PDC) were obtained as crystalline compounds from the water solutions. These compounds form the series of Ln2(PDC)3 ・ nH2O. All compounds are stable in air and insoluble in both water and common organic solvents. The hydrated complexes have been characterized by elemental analysis, thermal analysis (TG/DSC/DTA, and TG−FT-IR), FT-IR spectroscopy and X-ray analysis. 2,3-pyridinedicarboxylates of lanthanides(III) are stable in air below 313−323 K. Upon heating, hydrated complexes lose crystallization and lattice water in two steps. The values of dehydration enthalpy complexes are calculated from the DSC curves. The anhydrous compounds are stable at the temperature from 473 K to about 623 K and when heated they decompose to lanthanide oxides. Thermal and spectroscopic studies are essential for further studies and classification of compounds as MOF-like structures.

Open access
Effect of fabrication technique on the crystalline phase and electrical properties of PVDF films

Abstract

The effect of different fabrication techniques on the formation of electroactive β-phase polyvinylidene fluoride (PVDF) has been investigated. Films with varying concentration of PVDF and solvent - dimethyl formamide (DMF) were synthesized by tape casting and solvent casting techniques. The piezoelectric β-phase as well as non polar β-phase were observed for both the tape cast and solvent cast films from X-ray diffraction (XRD) micrographs and Fourier transform infra-red spectroscopy (FT-IR) spectra. A maximum percentage (80 %) of β-phase was obtained from FT-IR analysis for a solvent cast PVDF film. The surface morphology of the PVDF films was analyzed by FESEM imaging. The dielectric properties as a function of temperature and frequency and the ferroelectric hysteresis loop as a function of voltage were measured. An enhancement in the value of the dielectric constant and polarization was obtained in solvent cast films.

Open access
Evaluation of the biomedical properties of hydroxyapatite obtained from bone waste

Evaluation of the biomedical properties of hydroxyapatite obtained from bone waste

The method of obtaining hydroxyapatite by thermal treatment of deproteinised and defatted bone pulp called bone sludge was presented. The products of the calcining process were characterized with X-ray diffraction (XRD) and Fourier transformed infrared spectroscopy (FT-IR). The calcium content was determined with titration, whereas the contents of total phosphorus - with a spectrophotomertric method. X-ray investigations confirmed that hydroxyapatite was the main component of the calcining products in the calcining process. The FT-IR spectra confirmed that all organic substances were removed during the calcining process. On the basis of the research into physiological liquids the propensity to resorption of hydroxyapatite bioceramic was evaluated.

Open access
Studies on the growth and characterization of L-cysteine hydrogen fluoride single crystal

Abstract

L-cysteine hydrogen fluoride (LCHF) single crystals were grown from aqueous solution. Single crystal X-ray diffraction, FT-IR, UV-Vis-NIR, and TG-DTA were used to test the grown crystals. The specimen dielectric and mechanical behaviors were also studied. Powder X-ray diffraction of the grown crystal was recorded and indexed. The optical properties of the LCHF crystal were determined using UV-Vis spectroscopy. It was found that the optical band gap of LCHF was 4.8 eV. The crystal functional groups were identified using FT-IR. Second harmonic generation (SHG) efficiency of the LCHF was three times higher than that of KDP. The dielectric constant, dielectric loss and AC conductivity were measured at different frequencies and temperatures.

Open access
CdO-Fe3O4 nanocomposite with enhanced magnetic and photocatalytic properties

Abstract

Pure CdO nanopowder and CdO-Fe3O4 nanocomposite were synthesized by a cost effective chemical method, and the samples were characterized by XRD, SEM, TEM, FT-IR, UV-Vis-NIR and PL. Also, magnetic and photocatalytic properties of the synthesized samples were studied. XRD patterns of the composite confirm the presence of diffraction peaks related to both CdO and Fe3O4. EDX spectrum confirms the presence of the elements Cd, O and Fe in the composite. Peaks related to Cd–O and Fe–O bonds were observed respectively at 688 cm−1 and 592 cm−1 in the FT-IR spectrum. The paramagnetic behavior of pure CdO becomes ferromagnetic when coupled with Fe3O4. The composite exhibited a high photodegradation efficiency of 92.85 % against the degradation of methylene blue dye under visible light radiation.

Open access
Study of damage extent to glass fibre in glass-fibre fabric reinforcement during exposure simulating concrete pore solution

Abstract

The paper evaluates extent of corrosion damage to composite glass-fibre fabric reinforcement in environment simulating concrete pore solutions (pH 12.6, 13.0, 13.5) and carbonated concrete contaminated with chlorides (pH 8.1 + Cl-) using the FT-IR and SEM/EDS techniques. Also, the effect of corrosion damage on tensile strength of segmented glass fibre as well as the presence of specific protective organic coating on glass fibre were studied. The results demonstrate local corrosion damage of samples at pH 13.5 and on the other hand high stability in environment simulating carbonated concrete and carbonated concrete contaminated with chlorides. The study also suggests unevenness of organic coating with occurrence of localized porosity which is related to aforementioned corrosion damage. Corrosion damage in FT-IR spectra manifests by changes in peaks signalling hydrolysis of protective organic coating and occurrence of peaks suggesting presence of Ca2+ rich corrosion products.

Open access
Synthesis of maghemite (γ-Fe2O3) nanoparticles by thermal-decomposition of magnetite (Fe3O4) nanoparticles

Abstract

In this research work, we prepared γ-Fe2O3 nanoparticles by thermal-decomposition of Fe3O4. The Fe3O4 nanoparticles were synthesized via co-precipitation method at room temperature. This simple, soft and cheap method is suitable for preparation of iron oxide nanoparticles (γ-Fe2O3; Fe3O4). The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), vibrating sample magnetometer and differential scanning calorimeter (DSC). The XRD and FT-IR results indicated the formation of γ-Fe2O3 and Fe3O4 nanoparticles. The TEM images showed that the γ-Fe2O3 and Fe3O4 were spherical, and their size was 18 and 22 nm respectively. Magnetic properties have been measured by VSM at room temperature. Hysteresis loops showed that the γ-Fe2O3 and Fe3O4 nanoparticles were super-paramagnetic.

Open access