Search Results

You are looking at 51 - 60 of 1,345 items for :

Clear All
Open access

I. Barmina, R. Valdmanis and M. Zaķe

References 1. Gupta, A.K., Lilley, D.G., & Syred, N. (1984). Swirl Flows. UK: Abacus Press. 2. Meier, W., Duan, X.R., & Weigand, P. (2006). Investigations of swirl flames in a gas turbine model combustor: Turbulence-chemistry interactions. Combustion and Flame, 144, 225-236. 3. Külsheimer, C., & Büchner, H. (2002). Combustion dynamics of turbulent swirling flames, Combustion and Flame, 131, 70-84. 4. Syred, N., & Beer, J.M. (1974). Combustion in swirling flows: A review. Combustion and Flame, 23

Open access

Jerzy Straszko, Wiesław Parus and Wojciech Paterkowski

.R., Deshmukh, G.M. & Pataskar, S.G. (2004). Low temperature complete combustion of dilute toluene and methyl ethyl ketone over transition metal-doped ZrO2 (cubic) catalysts, Catalysis Communications, 5, 3, pp. 115-119. [4] Delimaris, D. & Ioannides, T. (2008). VOC oxidation over MnOx-CeO2 catalysts prepared by a combustion method, Applied Catalysis B: Environmental, 84, pp. 303-312. [5] Drago, R.S. Jurczyk, K. Singh, D.J. & Young, V. (1995). Low-temperature deep oxidation of hydrocarbons by metal oxides supported on carbonaceous materials

Open access

Yan Zeng, Hongfang Ma, Haitao Zhang, Weiyong Ying and Dingye Fang

catalytic reduction of NO with hydrocarbons over modified ferrierite. Pol. J. Chem. Tech. 15(2), 10-15. DOI: 10.2478/pjct-2013-0018 11. Shi, P. & Liu, C.J. (2009). Characterization of silica supported nickel catalyst for methanation with improved activity by room temperature plasma treatment. Catal. Lett. 133(1-2), 112-118. DOI: 10.1007/s10562-009-0163-0. 12. Zhao, A.M., Ying, W.Y., Zhang, H.T., Ma, H.F. & Fang, D.Y. (2012). Ni-Al2O3 catalysts prepared by solution combustion method for syngas methanation. Catal. Commun. 17, 34-38. DOI: 10

Open access

Maria Żygadło and Magdalena Woźniak

References Choi, S. K., Lee, S., Song, Y. K. & Moon, H. S. (2002). Leaching characteristics of selected Korean fly ashes and its implications for the groundwater composition near the ash mound, Fuel , 81, 1083-1090. http://www.fuelfirst.com http://www.fuelfirst.com Fitianos, K., Tsanikiidi, B. & Voundrias, E. (1998). Leacibility of heavy metals in Greek fly ash from coal combustion, Environ. Int. , 24, 477-486. Jankowski, J., Ward, C. R., French, D. & Groves, S. (2006). Mobility

Open access

Jakub Čedík, Martin Pexa, Bohuslav Peterka, Michal Holůbek, Daniel Mader and Radek Pražan

References ALDHAIDHAWI, M. – CHIRIAC, R. – BADESCU, V. 2017. Ignition delay, combustion and emission characteristics of diesel engine fueled with rapeseed biodiesel – A literature review. In Renewable and Sustainable Energy Reviews, vol. 73, pp. 178–186. ATMANLI, A. – ILERI, E. – YÜKSEL, B. 2015. Effects of higher ratios of n-butanol addition to diesel-vegetable oil blends on performance and exhaust emissions of a diesel engine. In Journal of the Energy Institute, vol. 88, no. 3, pp. 209–220. BABU, V. M. – MURTHY, M. – RAO, A. P. 2017. Butanol

Open access

Veronika Blahůšková, Jozef Vlček, Barbora Grycová, Dalibor Jančar and Marek Velička

., van Kessel, L.B.M. & Bosgra, O.H. (2005). Model predictive control as a tool for improving the process operation of MSW combustion plants. Waste Managem. 25, 8, 788–798. DOI: 10.1016/j.wasman.2005.03.005. 5. Kuriger, R., Young, D., Mackenzie, M., Sarv, H. & Trembly, J. (2017). Phase analysis of scale deposition in boiler tubes utilizing steam-assisted gravity drainage produced water. J. Therm. Sci. Engineer. Appl. 9 (1), 011009. DOI: 10.1115/1.4034598. 6. Raman, B., Hall, D.M., Shulder, S.J., Caravaggio, M.F. & Lvov, S.N. (2016). An experimental

Open access

Arkadiusz Jamrozik and Wojciech Tutak

References Bernhardt M., Michałowska J., Radzimirski S., 1976. Automotive air pollution . Wydawnictwa Komunikacji i Łączności, Warszawa (in Polish). Bocian P., Teodorczyk A., Rychter T., 2001. Study of ignition of a gaseous fuel jet in a dual chamber configuration. Journal of KONES. Combustion Engines , 8, 172-176. Charlton S.J., Jager D.J., Wilson M., 1990. Computer modelling and experimental investigation of a lean burn natural gas engine. SAE Paper , 900228, 536-542. DOI: 10

Open access

Alexandru Racovitza and Bogdan Radu

References AMESim™ Numerical Code, retrieved in: https://www.plm.automation.siemens.com/en/products/lms/imagine-lab/amesim/ Apostolescu, N., & Chiriac, R. (1998). The combustion process inside the internal combustion engines. Fuels Economy. Emissions limitation. Bucharest/Romania: Technical Press. AVL BOOST™ Combustion and Emissions, retrieved in: https://www.avl.com/simulationsolutions-for-construction-equipment/-/asset_publisher/gYjUpY19vEA8/content/avl-boostcombustion-and-emissions Catia v5.R

Open access

M. Zaķe, I. Barmina, V. Krishko, M. Gedrovics and A. Desņickis

(Oklahoma, Tulsa) http://www.primenergy.com/reference_BioMassFiring.htm Chunyang, Wu (2006). Fuel-NO x Formation during Low-Grade Fuel Combustion in a Swirling-Flow Burner. PhD Theses , Brigham Young University, 1-230. Drennan, S. (1982). First co-firing gas burner optimized on computer reduces particulate emissions 24%, saves $0.13/MMBtu. Journal Articles by Fluent Soft Users , 1-4. Babu, S. P. (2001). Role of Natural Gas in Promoting Bioenergy as a Component of the Sustainable Energy

Open access

Dariusz Szpica, Jarosław Czaban, Piotr Banaszuk and Emil Weresa

), Testing properties of engine oil mix with rape oil methyl esters, MOTROL - Motorization and Power Industry in Agriculture, Vol. 7, 24-34. 8. Bocheński C. I., Warsicki K., Bocheńska A. M. (2005), Comparison of process of stream creation and diesel oil and rape oil esters combustion in the research combustion chamber at single - and diphause fuel injection, Journal of KONES Internal Combustion Engines, Vol. 12(3-4), 33-42. 9. Canakci M. (2007), Combustion characteristics of a turbocharged DI compression ignition engine fueled with petroleum