Search Results

51 - 60 of 123 items :

  • Materials Characterization and Properties x
Clear All
Synthesis of maghemite (γ-Fe2O3) nanoparticles by thermal-decomposition of magnetite (Fe3O4) nanoparticles

Abstract

In this research work, we prepared γ-Fe2O3 nanoparticles by thermal-decomposition of Fe3O4. The Fe3O4 nanoparticles were synthesized via co-precipitation method at room temperature. This simple, soft and cheap method is suitable for preparation of iron oxide nanoparticles (γ-Fe2O3; Fe3O4). The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), vibrating sample magnetometer and differential scanning calorimeter (DSC). The XRD and FT-IR results indicated the formation of γ-Fe2O3 and Fe3O4 nanoparticles. The TEM images showed that the γ-Fe2O3 and Fe3O4 were spherical, and their size was 18 and 22 nm respectively. Magnetic properties have been measured by VSM at room temperature. Hysteresis loops showed that the γ-Fe2O3 and Fe3O4 nanoparticles were super-paramagnetic.

Open access
Factors influencing preparation of polyaniline doped with hydrochloric acid

Abstract

Factors influencing the reaction of chemical polymerization during aniline doping with hydrochloric acid (HCl) have been studied in this work. The optimal parameters for the preparation of polyaniline were determined as follows: aniline concentration - 4 mass %, molar ratios of oxidant (NH4)2S2O8:aniline - 1.2:1 and 1.3:1, the concentration of dopant - 1 mol/L. Fourier transform infrared spectroscopy (FT-IR) was applied to characterize the structure of polyaniline.

Open access
Wetting properties of titanium oxides, oxynitrides and nitrides obtained by DC and pulsed magnetron sputtering and cathodic arc evaporation

Abstract

Thin films of titanium oxides, titanium oxynitrides and titanium nitrides were deposited on glass substrates by the methods of direct current (DC) and pulsed magnetron sputtering and cathodic arc evaporation. Phase analysis of the deposited films by X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) showed the presence of phases with various Ti oxidative states, which indicated a high concentration of oxygen vacancies. The films morphology was investigated by scanning electron microscopy (SEM). Investigations of the films wettability, either with water or ethylene glycol, showed that it depends directly on the concentration of oxygen vacancies. The wettability mechanism was particularly discussed.

Open access
Green synthesis of silver nanoparticles using tannins

[1] Gould I.R., Lenhard J.R., Muenter A.A., Godleski S.A. Farid S., J. Am. Chem. Soc., 122 (2000), 11934. http://dx.doi.org/10.1021/ja002274s [2] You C.C., Chompoosor A., Rotello V.M., Nano Today, 2 (2007), 34. http://dx.doi.org/10.1016/S1748-0132(07)70085-3 [3] Schimd G., Chem. Rev., 92 (1992), 1709. http://dx.doi.org/10.1021/cr00016a002 [4] Deheer W.A., Rev. Mod. Phys., 65 (1993), 611. http://dx.doi.org/10.1103/RevModPhys.65.611 [5

Open access
Growth and characterization of NLO crystal: L-leucine phthalic acid potassium iodide

Abstract

A new semi-organic non linear optical crystal, L-leucine phthalic acid potassium iodide (LLPPI) has been grown from an aqueous solution by slow evaporation method. The grown crystals were subjected to different characterizations, such as single crystal XRD, FT-IR, UV-Vis, TGA, SEM, EDAX, micro hardness, dielectric and powder SHG. Single crystal structure was determined from X-ray diffraction data and it revealed that the crystal belongs to triclinic system with the space group P1. The vibrational frequencies of various functional groups were derived from FT-IR spectrum. Thermal stability of the grown crystal was investigated by TG-DTA studies and it was observed that the crystal was thermally stable up to 192 °C. Optical absorption study was carried out and a good transparency in the entire visible region was observed at the lower cutoff wavelength of 227 nm. Dielectric study was performed as a function of frequency and normal dielectric behavior was observed. The micro hardness test was carried out and the load dependent hardness was measured. Kurtz powder method was employed to explore the NLO characteristics of the grown crystal.

Open access
Enhancement in magnetic and electrical properties of Ni substituted Mg ferrite

Abstract

In this work, Ni substituted magnesium spinel ferrites having general formula Mg1−xNixFe2O4 (where x = 0.0, 0.1, 0.15, 0.2, 0.25 and 0.3) were synthesized by standard solid state reaction method. All the samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), DC resistivity measurements. X-ray diffraction analysis confirmed the single spinel phase. The lattice constant decreased with increasing Ni content due to the difference in the ionic radii of Mg2+ and Ni2+ ions. The FT-IR spectra reveled two prominent frequency bands in the wave number range of 400 cm−1 to 600 cm−1, which confirmed the cubic spinel structure of obtained compound and completion of chemical reaction. Magnetic studies revealed that the saturation magnetization increased with the substitution of Ni. The increase in magnetization was explained on the basis of distribution of magnetic and non-magnetic cations among A and B sites of the spinel lattice. A significant influence of cation distribution on DC electrical resistivity and activation energy was observed.

Open access
Chemical modification of TiO2 by H2PO4−/HPO42− anions using the sol-gel route with controlled precipitation and hydrolysis: enhancing thermal stability

Abstract

Two titanium phosphate materials (TpP and ThP) have been successfully synthesized by sol-gel route with controlled precipitation and hydrolysis. The TpP material was obtained from the reaction between precipitated titania and phosphate buffer solution H2PO4− /HPO42− (pH = 7.3). The TpP material was prepared through hydrolysis of titanium in the presence of H2PO4−/HPO42. The probable state of the phosphate anions in titania framework and their effect on the anatase-to-rutile transformation were characterized by ICP-AES, DTA-TG, 31P NMR, FT-IR, and Raman analysis HRTEM/SEM. FT-IR and 31P NMR analyses of titanium phosphate TpP calcined at low temperature showed that the phosphate species existed not only as Ti-O-P in the bulk TiO2 but also as amorphous titanium phosphates, including bidentate Ti(HPO4)2 and monodentate Ti(H2PO4)4. Increased calcination temperature only gave an enrichment of bidentate structure on the titania surface. For the TpP material, H2PO4−/HPO42− anions were introduced into the initial solution, before precipitation, what promoted their lattice localization. At high temperatures, all the phosphorus inside the bulk of TiO2 migrated to the surface. The Raman analysis of both samples showed that the bidentate phosphates increased the temperature of the anatase-to-rutile phase transformation to more than 1000 °C with the formation of well crystalline TiP2O7 phase. This phenomenon was more evident for TpP sample.

Open access
PbS nanopowder – synthesis, characterization and antimicrobial activity

Abstract

Lead sulphide (PbS) nanopowder was synthesized by a simple soft chemical route using lead nitrate and thiourea as precursor salts. The as-synthesized nanopowder was characterized by XRD, SEM, EDX, FT-IR, PL, Raman and magnetic measurements. XRD studies reveal the polycrystalline nature of the powder. The powder exhibits face-centered cubic structure with a strong (2 0 0) preferential orientation. The presence of Pb and S in the powder is confirmed by energy dispersive X-ray analysis. The peaks observed at 1112 cm-1 and at 606 cm-1 in the FT-IR spectrum are related to heteropolar diatomic molecules of PbS. The Raman peak shift at 173 cm-1 might have originated from the combination of longitudinal and transverse acoustic phonon modes associated with PbS crystal. The M-H loop confirms the paramagnetic nature of the as-synthesized PbS nanopowder. The nanopowder has significant antimicrobial activity against certain bacteria and fungi strains which make it suitable as antimicrobial agent against pathogenic microorganisms.

Open access
Mixed structure Zn(S,O) nanoparticles: synthesis and characterization

Abstract

In the present work, mixed structure Zn(S,O) nanoparticles have been synthesized using solution based chemical coprecipitation technique. Two different zinc sources (Zn(CH3COO)2·2H2O and ZnSO4·7H2O) and one sulfur source (CSNH2NH2) have been used as primary chemical precursors for the synthesis of the nanoparticles in the presence and absence of a capping agent (EDTA). The structural, morphological, compositional and optical properties of the nanoparticles have been analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transmission infra-red (FT-IR) and UV-Visible (UV-Vis) spectroscopy. XRD revealed the formation of mixed phases of c-ZnS, h-ZnS and h-ZnO in the synthesized nanoparticles. The surface morphology was analyzed from SEM micrographs which showed noticeable changes due to the effect of EDTA. EDX analysis confirmed the presence of zinc, sulfur and oxygen in Zn(S,O) nanoparticles. FT-IR spectra identified the presence of characteristic absorption peaks of ZnS and ZnO along with other functional group elements. The optical band gap values were found to vary from 4.16 eV to 4.40 eV for Zn(S,O) nanoparticles which are higher in comparison to the band gap values of bulk ZnS and ZnO. These higher band gap values may be attributed to the mixed structure of Zn(S,O) nanoparticles.

Open access
Effects of aluminum (Al) incorporation on structural, optical and thermal properties of ZnO nanoparticles

Abstract

In this research article, pure and 1 %, 3 % and 5 % aluminium doped zinc oxide nanoparticles (NPs) were prepared via sol-gel method and then calcined at 500 °C. X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared (FT-IR) spectroscopy, UV-Vis spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques were used to investigate the structural, optical and thermal properties of synthesized pure and Al doped ZnO nanoparticles. Energy dispersive X-ray spectroscopy (EDX) analysis revealed high purity of nanoparticles in the synthesized products without any impurity peaks. Mean dimension of the nanoparticles was ~28 nm and they were hexagonal in shape, according to the images analyzed by transmission electron microscope (TEM). The optical absorption spectra of pure and Al doped ZnO samples studied using UV-Vis spectrometry have been presented and we have observed that the band gap increases with increasing Al concentration. In FT-IR spectra, the broad absorption peaks around 485 cm−1 and 670 cm−1 were assigned to Zn–O vibration. Above 450 °C, the TG curve became flat what means there was no weight loss. In the DSC curve it is seen that the transition at 150 °C was highly exothermic because of structural relaxation and on doping the exothermic peaks became shifted to the lower value of temperature. These types of materials are very useful in optoelectronics applications.

Open access