Search Results

51 - 60 of 107 items :

  • "Structural steels" x
Clear All

, Simulation of the plastic range of structural steel performance under the complex stress based on the Gurson-Tvergaard-Needleman model, [in Polish], Przeglad Budowlany, 3 , 43-49, 2012. 20. P.G. Kossakowski, Influence of initial porosity on strength properties of S235JR steel at low stress triaxiality, Archives of Civil Engineering, 58 , 3, 293-308, 2012. 21. A.G. Franklin, Comparison between a quantitative microscope and chemical method for assessment on non-metallic inclusions, Journal of the Iron and Steel Institute, 207 , 181-186, 1969. 22. PN-EN 10025-1:2005 Hot

., Blom R.: Development of a method for corrosion fatigue life prediction of structurally loaded bearing steel. Corrosion, 2001, Vol. 57, No.5, pp.404-412 17 18. Qian Y.R., Cahoon J.R.: Crack initiation mechanisms for corrosion fatigue of austenitic stainless steel. Corrosion, 1997, Vol.53, No.2, pp.129-135 18 19. Ahin S.-H. Lawrence Jr. F.V., Metzger M.M.: Corrosion fatigue of an HSLA steel. Fatigue & Fracture of Engineering Materials & Structures, 1992, Vol.15, pp.625-642 19 20. Boukerrou A., Cottis R.A.: Crack initiation in the corrosion fatigue of structural steels

. Pankaj, A. H. Simpson. The effect of strain rate on the failure stress and toughness of bone of different mineral densities. J. of Biomechanics 2013 (46), 2283 - 2287. [7] A. A. Lebedev, N. R. Muzyka, V. P. Shvets. On options of improving reliability of material hardness assessment methods. Strength Mater 2011 (43), 237 - 246. [8] A. A. Lebedev, V. P. Shvets. Assessment of damage in structural steels by the parameters of scatter of hardness characteristics in loaded and unloaded states. Strength of Materials 2008 (40), 302

., Zhang, N. S., & Lee, G. C. (2015). Cyclic loading test of unbonded and bonded posttensioned precast segmental bridge columns with circular section. Journal of Bridge Engineering , 21(2), 04015043. Dai, L., Wang, L., Zhang, J., & Zhang, X., 2016. A global model for corrosion-induced cracking in prestressed concrete structures. Engineering Failure Analysis , 62, 263-275. Dewit, N. (2012). A Composite Structural Steel and Prestressed Concrete Beam for Building Floor Systems. Di Ludovico, M., Nanni, A., Prota, A., & Cosenza, E., 2005. Repair of bridge girders with

. H., Duthinh, D., Chapman, R. E &.Bao, Y. (2011). Measures of Building Resilience and Structural Robustness Project, National Institute of Standard and Technology, U.S. Department of Commerce. [4] ANSI/AISC 341-10 (2010). Seismic provisions for structural steel buildings, American Institute for Steel Construction. [5] Neagu C. (2011). Multi-story building frames stiffened with dissipative shear walls, PHD. Thesis, Universitatea Politehnica Timisoara, Facultatea de Constructii, Departamentul de Construcţii Metalice şi Mecanica Construcţiilor, ISBN 978

Metalice şi Mecanica Construcţiilor, ISBN 978-606-554-059-0. [11] ECCS.1985 Recommended Testing Procedures for Assessing the Behaviour of Structural Elements under Cyclic Loads, European Convention for Constructional Steelwork, Technical Committee 1, TWG 1.3 – Seismic Design, No.45, 1985 [12] AISC, 2005, “Seismic Provisions for Structural Steel Buildings”. American Institute of Steel Construction, Inc. Chicago, Illinois, USA.

REFERENCES [1] Lichańska, E., Sułowski, M., Ciaś, A.: Arch. Metall. Mater., vol. 61, 2016, no. 1, p. 109 [2] Lindsley, B., Rutz, H.: Adv. Powder Metall. Part. Mater., 2008, p. 9 [3] Danninger, H., Pöttschacher, R., Bradac, S., Šalak, A., Seyrkammer, J.: Powder Metall., vol. 48, 2005, no. 1, p. 23 [4] Danninger, H.: Powder Metall. Int., vol. 24, 1992, p. 73 [5] Danninger, H.: Powder Metall. Int., vol. 24, 1992, p. 163 [6] Missol, W.: Spiekane części maszyn, 1972 [7] Ciaś, A.: Development and Properties of Fe-Mn-(Mo)-(Cr)-C Sintered Structural Steels, 2004 [8] Fiał

.: Powder Metallurgy, vol. 51, 2008, no. 3, p. 237 [7] Ciaś, A.: Development and Properties of Fe-Mn-(Mo)-(Cr)-C Sintered Structural Steels. Kraków : AGH - Uczelniane Wydawnictwo Naukowo-Dydaktyczne, 2004 [8] Ciaś, A., Stoytchev, M.: Archives of Metallurgy and Materials, vol. 62, 2017, no. 1, p. 11 [9] Ciaś, A.: International Journal of Materials Research, vol. 106, 2015, no. 5, p. 495 [10] Ciaś, A.: Kovové Materiály, vol. 54, 2016, no. 4, p. 269 [11] Ciaś, A.: Powder Metallurgy, vol. 56, 2014, no. 3, p. 231 [12] Ciaś, A., Mitchell, SC., Pilch, K., Ciaś, H., Sułowski, M

. 589-607. Kossakowski P.: Simulation of the plastic range work of structural steel in a complex stress state on the model Gursona-Tvergaarda-Needleman. Building Review (Przegląd Budowlany) 3 (2012), (in Polish), p. 43-49. Gurson A.L.: Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I - Yield Criteria and Flow Rules for Porous Ductile Media. Journal of Engineering Materials and Technology, Transactions of the ASME 99 (1977), pp. 2-15. Tvergaard V.: Influence of Voids on Shear Band Instabilities under Plane Strain Condition, International

Compressed Sensing. Sensors, 17 (2017), 608; doi:10.3390/s17030608 7. Stegemann R., Cabeza S., Lyamkina V., Brunoa G., Pittner A., Wimpory R., Boin M., Kreutzbruck M., Residual stress characterization of steel TIG welds by neutron diffraction and by residual magnetic stray field mappings. Journal of Magnetism and Magnetic Materials 426 (2017) 580–587. 8. Haihong Huang and Zhengchun Qian, Effect of Temperature and Stress on Residual Magnetic Signals in Ferromagnetic Structural Steel. IEEE Transactions On Magnetics, 53(1) (2017). 9. Haihong Huang, Zhengchun Qian, Cheng Yang