Search Results

You are looking at 41 - 50 of 398 items for :

  • pharmacokinetics x
Clear All
Open access

Fülöp Ibolya, Croitoru Mircea Dumitru, Vajda Andrea, Jakab Irén and Fogarasi Erzsébet

;37:937-945. 5. Gan TJ. - Diclofenac: an update on its mechanism of action and safety profile. Curr Med Res Opin. 2010;26:1715-1731. 6. Davies NM, Anderson KE. - Clinical Pharmacokinetics of Diclofenac. Clin Pharmacokinet. 1997;33:1-20. 7. Hinz B, Chevts J, Renner B, et al. - Bioavailability of diclofenac potassium at low doses. Br J Clin Pharmacol. 2005;59:80-84. 8. Walter K, von Nieciecki A. - Relative bioavailability of diclofenac after a single administration of a new multiple-unit formulation with enteric-coated pellets. Arzneimittel-Forschung-Drug Res

Open access

Dragana Dragas Milovanovic, Ivan Radosavljevic, Marija Radovanovic, Jasmina R. Milovanovic, Slobodan Obradovic, Slobodan Jankovic, Dragan Milovanovic and Natasa Djordjevic

, Hirsch LJ, et al. The consequences of refractory epilepsy and its treatment. Epilepsy Behav 2014; 37C:59-70. 6. Löscher W, Klotz U, Zimprich F, Schmidt D. The clinical impact of pharmacogenetics on the treatment of epilepsy. Epilepsia 2009; 50(1):1-23. 7. Thorn CF, Leckband SG, Kelsoe J, et al. PharmGKB summary: carbamazepine pathway. Pharmacogenet Genomics 2011; 21(12):906-10. 8. Jankovic SM, Jovanovic D, Milovanovic JR. Pharmacokinetic modeling of carbamazepine based on clinical data from Serbian epileptic patients. Methods Find Exp Clin Pharmacol

Open access

Vipul P. Patel, Hardik A. Lakkad and Kalpesh Chhotalal Ashara

improved dosing schedule for ivermectin as a microfilaricidal agent against onchocerciasis. Acta Trop 1997;68(3):269-75. 5. Camargo JA, Sapin A, Nouvel C, et al. Injectable PLA-based in situ forming implants for controlled release of Ivermectin a BCS Class II drug: solvent selection based on physicochemical characterization. Drug Dev Ind Pharm 2013;39(1):146-55. 6. Canga AG, Sahagun Prieto AM, Diez Liebana MJ, et al. The pharmacokinetics and interactions of ivermectin in humans-a mini-review. AAPS J 2008;10(1):42-6. 7. Chaudhari PD, Motewar PP, Sherekar

Open access

S. Đorđe Marjanović, Danica Bogunović, Mirjana Milovanović, Darko Marinković, Nemanja Zdravković, Vladimir Magaš and M. Saša Trailović


In the present study we tested the dose andh time dependence of the antinematodal effects of carvacrol and tyhmol on Caenorabditis elegans, and the efficacy of carvacrol, thymol, p-cymene and cinnamaldehyde,which were administrated in the drinking water of rats naturally infected with the pinworm Syphacia muris. The control treatment of the infected rats was carried out with piperazine. Thymol caused a dose and time-dependent mortality in adult C. elegans. The value of the Median Lethal Concentration (LC50) of thymol was 117.9nM after 24h and 62.89 nM after 48h of exposure. Carvacrol exhibited a higher antinematodal efficiency than thymol. The LC50 of carvacrol, after 24 hours of exposure, was 53.03 nM, while after 48 hours it was 33.83 nM. On the other hand, piperazine showed an extremely high efficacy against S. muris infection in rats. Piperazine, at a dose of 625 mg/kg bw, administered in drinking water continuously for 10 days, eliminates the infection completely. However, none of the investigated active ingredients of essential oils were effective against S. muris. The reason for the lack of efficiency may be due to their pharmacokinetic properties. A relatively low amount of, orally administered, active ingredients of essential oils reaches the distal segments of the gastrointestinal tract, where S. muris inhabits the gut (colon and cecum). The obtained results, on C. elegans, indicate a clear dose and time-dependent antinematodal effect of thymol and carvacrol. However, for clinical application, it is necessary to examine the efficacy of microencapsulated formulations with a controlled release of active ingredients of essential oils in certain parts of the gastrointestinal tract.

Open access

Duffee Lauren, Passino Sanna Eraldo, Scanu Antonio and Columbano Nicolò

REFERENCES 1. Ahern BJ, Soma LR, Rudy JA, Uboh CE, Schaer TP: Pharmacokinetics of fentanyl administered transdermally and intravenously in sheep. Am J Vet Res 2010, 71:1127-1132. 2. Grond S, Radbruch L, Lehmann KA: Clinical pharmacokinetics of transdermal opioids. Clin Pharmacokinet 2000, 38:59-89. 3. Wilson D, Pettifer GR, Hosgood G: Effect of transdermally administered fentanyl on minimum alveolar concentration of isoflurane in normothermic and hypothermic dogs. J Am Vet Med 2006, 228:1042-1046. 4. Yackey M, Ilkiw JE, Pascoe PJ, Tripp LD

Open access

Giuseppe Quaranta, Ada Rota, Andrea Dogliero and Flaviana Pecchia

: Priapism in a castrated cat associated with feline infectious peritonitis. J Feline Med Surg 2008, 10:181-184. 6. Swalec KM, Smeak DD: Priapism after castration in a cat. J Am Vet Med Assoc 1989, 195:963-964. 7. Swanson WF, Wolfe BA, Brown JL, Martin-Jimenez T, Riviere JE, Roth TL, Wildt DE: Pharmacokinetics and ovarian-stimulatory effects of equine and human Chorionic Gonadotropins administered singly and in combination in the domestic cat. Biol Reprod 1997, 57:295-302. 8. Cox JE, Redhead PH: Prolonged effect of a single injection of human chorionic

Open access

Allison Grieg

References 1 Richards M, Williams M, Chalmers E et al. A United Kingdom Haemophilia Centre Doctors’ Organization guideline approved by the British Committee for Standards in Haematology: guideline on the use of prophylactic factor VIII concentrate in children and adults with severe haemophilia A. Br J Haematology 2010; 149: 498;507. 2 Morfini M. Pharmacokinetics of factor VIII and factor IX. Haemophilia 2003; 9 <Suppl 1=: 94;9.. 3 Bjorkman S. Prophylactic dosing of factor VIII and factor IX from a clinical

Open access

Renata Rezonja, Lea Knez, Tanja Cufer and Aleš Mrhar

. Pharmacokinetic optimisation of treatment with oral etoposide. Clin Pharmacokinet 2004; 43: 441-6. 13. Montecucco A, Biamonti G. Cellular response to etoposide treatment. Cancer Lett 2007; 252: 9-18. 14. Hande KR. The importance of drug scheduling in cancer chemotherapy: etoposide as an example. Oncologist 1996; 1: 234-9. 15. Greco FA, Johnson DH, Hande KR, Porter LL, Hainsworth JD, Wolff SN. High-dose etoposide (VP-16) in small-cell lung cancer. Semin Oncol 1985; 12(Suppl 2): 42-4. 16. Slevin ML

Open access

Lipták Tomáš, Capík Igor, Ledecký Valent, Nagy Oskar, Kuricová Mária, Tóthová Csilla, Maďari Aladár, Farbáková Jana, Petrovič Vladimír and Horňák Slavomír

, Elma E: Comparison of propofol-remifentanil and propofol-fentanyl anesthesia during ovariohysterectomy in dogs, Kafras Univ Vet Fak Derg 2013, 19: A33-A40 16. De Mulder PA, Van Kerckhoven RJ, Adriaensen HF, Gillebert TC, De Hert SG: Continuous total intravenous anesthesia, using propofol and fentanyl in an open-thorax rabbit model: evaluation of cardiac contractile function and biochemical assessment. Lab Anim Sci 1997, 47:367-75. 17. Hughes JML, Nolan AM: Total intravenous anesthesia in Greyhounds: Pharmacokinetics of propofol and

Open access

Lipar Marija, Turner Rajka, Radišić Berislav, Grgurević Lovorka, Erjavec Igor, Brajenović Nataša, Brčić Karačonji Irena, Samardžija Marko and Vnuk Dražen

adrenaline on lidocaine clearance in vivo. Anesthesiology 1999, 91: 962-968. 5. Groeben H: Epidural anesthesia and pulmonary function. J Anesth 2006, 20: 290-299. 6. Lubenow TR, Ivankovich AD, Barkin RL: Management of acute postoperative pain. In: Barash PG, Cullen BF, Stoelting RK (Eds.). Clinical Anesthesia. Lippincott Williams & Wilkins, Philadelphia, USA, IV edition 2002, 1405-1437. 7. Clement R, Malinowsky J-M, Le Corre P, Dollo G, Chevanne F, Le Verge R: Cerebrospinal fluid bioavailability and pharmacokinetics of