Search Results

You are looking at 41 - 50 of 472 items for :

Clear All
Open access

M. Małek, P. Wiśniewski, H. Matysiak, M. Zagórska and K. J. Kurzydłowski

References [1] Y. Hirata, K. Miyano, S. Sameshima, Y. Kamino, Reaction between SiC surface and aqueous solutions containing Al. Ions, Physicochemical and Engineering Aspects 133 , 183-189 (1998). [2] R. Haratym, R. Biernacki, D. Myszka, Eko-logiczne wytwarzanie dokładnych odlewóww formach ce-ramicznych, Oficyna Wydawnicza Politechniki Warszawskiej, (2008). [3] H. Matysiak, J. Ferenc, J. Michalski, Z. Lipiński, G. Jakubowicz, K.J. Kurzydłowski, Porowatośći wytrzymałość form ceramicznych wykorzysty-wanychw procesie odlewania precyzyjnego metodą Bridgmana

Open access

A. Klasik, M. Maj, K. Pietrzak, A. Wojciechowski and J. Sobczak

traitements Thermiques sur les propriétés mécaniques et sur la Microstructure des deux alliages composites Al-Si-Mg/SiC/10p, 1993 Université du Québec à Chicoutimi, Québec. [9] D. J. Lloyd, E. Dewing, Stability of SiC in Molten Aluminum, in D. S. Wilkinson (Ed.) Advanced Structural Materials, 71-78, Pergamon Press, New York 1989. [10] A359 Al alloy reinforced with irregularly shaped SiC particles http://bricad.com/aluminium/dur/guides/awg/index.html .

Open access

W. Bochnowski

on thick Ti-6Al-4V titanium alloy. Journal of Materials Processing Technology. 192-193 , 83-88. Yuan-Ching L., Yu-Chi L. (2011). Microstructure and tribological performance of Ti-6Al-4V cladding with SiC powder. Surface & Coatings Technology. 205 , 5400-5405.

Open access

Milan Perný, Vladimír Šály, Michal Váry, Miroslav Mikolášek, Jozef Huran and Juraj Packa

(2001), 329. [15] SHIMIZU, H.-TAJIMA, N.-KADA, T.-NAGANO, S.-OHASHI, Y.-HASAKA, S. : Jpn. J. Appl. Phys. 49 Part 1 (2010), 05FF02. [16] FURUYA, A.-YONEDA, K.-SODA, E.-YOSHIE, T.-OKAMURA, H.-SHIMADA, M.-OHTSUKA, N.-OGAWA, S. : J. Vac. Sci. Technol. B 23 (2005), 2522. [17] LOURO, P.et al : Use of a-SiC:H Photodiodes in Optical Communications Applications, Advances in Photodiodes (2011). [18] MAGAFAS, L. : Study of Optical Sensors of the Form Al/a-SiC: H/c-Si (n) with High Sensitivity, Journal of Engineering

Open access

J. Wieczorek

Conference Series-Materials Science and Engineering 35 , article no 012019 (2012), Conference on Technologies and Properties of Modern Utilised Materials, Poland, Katowice. [7] G. Siwiec, The kinetics of aluminium evaporation from the Ti-6Al-4V alloy, Archives of Metallurgy and Materials 58 (4), 1155-1160 (2014). [8] A. Dolata-Grosz: Interaction of Al-Si alloys with SiC/C ceramic particles and their influence on microstructure of composites, Light Metals and their Alloys I, Technology Microstructure and Properties, Solid State Phenomena 176 , 55-62 (2011).

Open access

B. Lipowska, B. Psiuk, M. Cholewa and Ł. Kozakiewicz

. [16] Nogi, K. (2010). The role of wettability in metal-ceramic joining. Scripta Materialia. 62, 945-948. DOI: 10.1016/j.scriptamat.2010.03.007. [17] Krauß, G., Kübler, J. & Trentini, E. (2002). Preparation and properties of pressureless infiltrated SiC and AlN particulate reinforced metal ceramic composites based on bronze and iron alloys. Materials Science and Engineering A. 337(1), 315-322. DOI: 10.1016/S0921-5093(02)00044-8. [18] Hashim, J., Looney, L. & Hashmi, M.S.J. (1999). Metal matrix composites: production by the stir casting

Open access

Z. Konopka, A. Pasieka, M. Łągiewka, M. Nadolski and A. Zyska

References [1] Konopka, Z. (2011). Metal cast composites. Częstochowa: Wydawnictwo Politechniki Częstochowskiej. (in Polish). [2] Matthews, F. L. Rawlings, R. D. (1994) Composite Materials: Engineering and Science. Chapman and Hall. [3] Metcalfe A. (1978). Interfaces in metal matrix composites, Academic Press, vol.I, Composite Materials. NY, London [4] Gawroński, J. Cholewa, M. & Szajnar, J. (1994). Aluminium SiC ceramic particles composite, the technology of shape composite production. Computer

Open access

Z. Konopka and A. Pasieka

References [1] Konopka, Z. (2011). Metal cast composites. Częstochowa: Wydawnictwo Politechniki Częstochowskiej. [2] Ashby, M. F., Jones, D. R. H. (1998). Engineering Materials. Properties and Applications. Warsaw: WNT. [3] Konopka, Z. (2008). Gravity and pressure die casting of Al alloy matrix composites with SiC and graphite particles. Częstochowa: Wydawnictwo Politechniki Częstochowskiej. [4] Matthews, F. L., Rawlings, R. D. (1994). Composite Materials: Engineering and Science. Chapman and

Open access

A. Pasieka and Z. Konopka

(1664). [10] Frommer, L. (1926). Der Spritzguss. Werkstattstechnik. H4. [11] Konopka, Z. (1995). Pressure Die Cast Fibre Reinforced Al- Si Alloy Matrix Composites. In Euromat 667-670, Padova. [12] Śleziona, J. (1995). The influence of ceramic particles on solidification of Al-Si and Al2O3 composites. Archives of Materials Science . 2, 163-178. [13] Konopka, Z. (2008). Gravity and pressure die casting of Al alloy matrix composites with SiC and graphite particles. Czestochowa University of Technology Publ

Open access

G.-S. Ham, S.-H. Kim, J.-Y. Park and K.-A. Lee

Abstract

This study investigated the high temperature oxidation property of SiC coated layer fabricated by aerosol deposition process. SiC coated layer could be successfully manufactured by using pure SiC powders and aerosol deposition on the Zr based alloy in an optimal process condition. The thickness of manufactured SiC coated layer was measured about 5 μm, and coating layer represented high density structure. SiC coated layer consisted of α-SiC and β-SiC phases, the same as the initial powder. The initial powder was shown to have been crushed to the extent and was deposited in the form of extremely fine particles. To examine the high temperature oxidation properties, oxidized weight gain was obtained for one hour at 1000°C by using TGA. The SiC coated layer showed superior oxidation resistance property than that of Zr alloy (substrate). The high temperature oxidation mechanism of SiC coated layer on Zr alloy was suggested. And then, the application of aerosol deposited SiC coated layer was also discussed.