Search Results

41 - 50 of 369 items :

Clear All
Musculoskeletal Outcomes from Chronic High-Speed High-Impact Resistive Exercise

added to the 1.0 kg IET sled. Knee extension was done with a velcro cuff around their distal left shank. As the knee extended ~10–15°, the sled traveled rapidly to the end of the track. As it traveled, the knee flexed back to its initial joint angle. Before the sled reached the end of the track, the next repetition occurred, which accelerated the sled to the track’s opposite end. These high-speed movements were repeated over successive repetitions until subjects were proficient in the exercise. Changes in sled direction created an impact force, which was high due to

Open access
The Research of Acoustic Emission of a Low-Power Aircraft Engine

G and annex 16 Chapter 10 of ICAO Convention” („Pomiar hałasu zewnętrznego samolotów śmigłowych wg przepisów FAR 36 Appendix G oraz Rozdziału 10 Załącznika 16 Konwencji ICAO”), Prace Instytutu Lotnictwa, 221, pp. 109 - 114. [11] www.ulc.gov.pl , access: 05.2018. [12] Cieślak, S., Krzymień, W., 2018: “Drivetrain noise of the Gyroplane I-28” („Hałas układu napędowego wiatrakowca I-28”), Prace Instytutu Lotnictwa, 1(250), pp. 7-15. [13] Dzierżanowski, P., 1981: Reciprocating engines series aviation propulsion systems ( Silniki Tłokowe serii

Open access
Solitons and other solutions of (3 + 1)-dimensional space–time fractional modified KdV–Zakharov–Kuznetsov equation

= −1.5, k 2 = 0.75, k 3 = 1, c 2 = 1.1, δ = −1.2, α = 1. Fig. 6 The singular soliton solution (92) for k 1 = 0.5, k 2 = -0.5, k 3 = 0.5, c 2 = −1.2, δ = −1.5, α = 1. Remark 2 All of the results are calculated by using Maple, when t = 1 and z = 2 with the interval 0 < x , y ≤ 10. 5 Conclusions In this study, we have investigated the exact analytic solutions to the (3+1)-dimensional space-time fractional mKdV–ZK equation. By means of conformable fractional derivative and wave transformation, the

Open access
Numerical Solution of Abel′s Integral Equations using Hermite Wavelet

6.55e-03 0.4 5.79e-10 1.75e-03 0.5 1.04e-09 8.27e-03 0.6 3.79e-10 1.64e-03 0.7 1.14e-09 4.11e-03 0.8 9.93e-10 3.98e-03 0.9 8.86e-09 1.13e-03 (16) y ( x ) = 2 x − ∫ 0 x y ( t ) x − t d t ,       0 ≤ x ≤ 1.                                                 $$y\left( x \right)=2\sqrt{x}-\int_{0}^{x}{\frac{y\left( t \right)}{\sqrt{x-t}}}dt,\,\,\,0\le x\le 1.$$ which has the exact solution y ( x ) = 1 − e x p ( π t ) e r f c ( π t ) . $y\left( x \right)=1-exp\left( \pi t \right

Open access
Application of modified wavelet and homotopy perturbation methods to nonlinear oscillation problems

observed that the amplitude depends upon the initial conditions. Figure 2 represents the displacement and velocity versus time t. From the figure, it is noted that the amplitude of displacement and velocity are equal. Fig. 1 (a–c) Comparison of CWM ( Eq.(24) , HPM ( Eq.(25) and numerical method (MATLAB result) for various parameter values. Fig.1(a) l = 0.5 and μ = 0.01 Fig.1(b) l = 0.5 and μ = 0.1 Fig.1(c) l = 0.5 and μ = 1. Fig. 2 Plot of displacement and velocity for oscillator Eq. (26) with weak nonlinearity and small

Open access
Dimensionless characterization of the non-linear soil consolidation problem of Davis and Raymond. Extended models and universal curves

{{\rm{k}}}{{{{\rm{m}}_{\rm{v}}}{{\rm{\gamma }}_{\rm{w}}}}} \end{array}$ remains more or less constant. On the other hand, they adopted an e∼ σ ′ dependency governed by the following empirical law [ 15 ]: e = e o − I c l o g 10 σ ′ σ o ′ $$\begin{array}{} \displaystyle {\rm{e}} = {{\rm{e}}_{\rm{o}}}{\rm{\;}} - {{\rm{I}}_{\rm{c}}}{\rm{lo}}{{\rm{g}}_{10}}\left( {\frac{{{\rm{\sigma '}}}}{{{\rm{\sigma }}_{\rm{o}}^{{\rm{'\;}}}}}} \right) \end{array}$$ (3) where I c is the compression index, a constant parameter. From the definition of the volumetric compressibility coefficient, m v = − ∂ e ∂ σ ′ 1 1 + e

Open access
New Complex Hyperbolic Structures to the Lonngren-Wave Equation by Using Sine-Gordon Expansion Method

Transition Metal Elements on the Relaxation Times in the Agar Solutions, Asian Journal of Chemistry, 19(4), (2007), 3191-3196. Askin M. Effect of the Transition Metal Elements on the Relaxation Times in the Agar Solutions Asian Journal of Chemistry 19 4 2007 3191 3196 [11] C. Cattani, A. Ciancio, On the fractal distribution of primes and prime-indexed primes by the binary image analysis, Physica A, 2016, 460, 222-229 10.1016/j.physa.2016.05.013 Cattani C. Ciancio A. On the fractal distribution of primes and prime-indexed primes by the binary image analysis Physica A 2016

Open access
Experimental Verification of Numerical Calculations with the Use of Digital Image Correlation

BIBLIOGRAPHY [1] Osmęda, A., 2012, „Strength and construction analysis of aerospace test structure - Internal report (Analiza wytrzymałościowo-konstrukcyjna demonstratora, Raport wewnętrzny),” 05/BU/2012/TEBUK, Institute of Aviation, Warsaw. [2] Osmęda, A., 2016, “Result comparison of numerical analysis and structural tests of aerospace test structure (Porównanie wyników analiz numerycznych i prób wytrzymałościowych demonstratora struktury lotniczej),” Transactions of the Institute of Aviation, Warsaw, No. 244(3). pp. 123-134. [3] Bajurko, P

Open access
Some results on D-homothetic deformation of (LCS)2n+1-manifolds

( Y , Z ) + η ( C ¯ ( ξ , Y ) Z ) } + B ( W ) { ( 2 n − 1 ) g ( Y , Z ) − η ( Y ) η ( Z ) } . $$\begin{array}{} \displaystyle (\nabla_{W}\overline{S})(Y, Z)-\frac{d\tilde{r}(W)}{2n+1}g(Y, Z)+g((\nabla_{W}\overline{C})(\xi, Y)Z, \xi)\\\displaystyle \,\,=A(W)\{\overline{S}(Y, Z)-\frac{\tilde{r}}{2n+1}g(Y, Z)+\eta(\overline{C}(\xi, Y)Z)\}\\\displaystyle\,\,+B(W)\{(2n-1)g(Y, Z)-\eta(Y)\eta(Z)\}. \end{array}$$ (3.29) In view of (1.2) , (2.7) , (2.10) and (3.3) , equation (3.25) reduces to η ( C ¯ ( ξ , Y ) Z ) = r ¯ 2 n ( 2 n + 1 ) − α ( α + 1 − a ) ( 2 a

Open access
Deterministic chaos in pendulum systems with delay

}_{3}}\left( \tau -\frac{i\gamma }{m} \right)={{y}_{3i}}\left( \tau \right),i=\overline{0,m}. \\ \end{array}$$ Then, using difference approximation of derivative [ 6 ], [ 7 ] we obtain (5) d y 10 τ d τ = C y 1 m τ − y 20 τ y 3 m τ − 1 8 y 10 2 τ y 20 τ + y 20 3 τ ; d y 20 τ d

Open access