Search Results

41 - 50 of 118 items :

  • "development" x
  • Energy Engineering x
Clear All
A Method for Energy Consumption Assessment by Operation of BEV’s in Different Road Conditions

Abstract

For the third time in the history of humankind, it is trying to implement e-mobility. There is a reasonable hope that this attempt will succeed this time. E-mobility is generally regarded as a zero emission. This sentence can only be true in a very small scope, as only in relation to selected parameters and in a very limited its dimension. The situation can change radically. If it will be take into account, the emissions in the production of electricity is necessary for the movement of this type of vehicles Second problem is the energy use amount. We know today that the energy consumption of electric cars, especially in long-term operation is too big. This general knowledge is not confirmed by research results. Both relevant databases and methods of their analysis are missing. This is an unfavourable situation because it is not possible to verify the effects of various changes introduced e.g. in the construction or technology of cars. This publication can be included in those in which it is shown how to change this situation.

The analysis of the results of long-term car use can be used as a verification of various development works, especially in e-mobility, which is only just starting. In the future, it will be need to create the appropriate “big data” databases and a number of tools to analyse the data collected there.

Open access
The Correct Selection of Diagnostic Parameters of Marine Diesel Engine and their Minimization of as a Necessary Action in the Formation of Diagnostic Algorithm

Abstract

This article describes the methodology of creating algorithms and diagnostic programs. Still in the construction of such algorithms and diagnostic creating programs mostly is used classical approach, the methodological basis can be reduced to the several basic tasks. One of them is the proper selection and minimization of diagnostic parameters. The article shows the importance of proper selection and minimization of diagnostic parameters on the example of the diagnostics of the injection system of a marine diesel engine. It was indicated to practical usefulness for this purpose calculated the values sensitivity of a given parameter. The stronger the diagnostic parameter responds to a change in the structural parameter, the greater its diagnostic sensitivity is and thus the early development of a given fault can be detected based on deviation analysis of this parameter from its reference value. Based on experimental data, FIS (Fault Isolation System) matrix was built after selecting and minimizing diagnostic parameters. Triple-valued evaluation of residues (–1, 0, +1) was used. The research was carried out on a real object – a four-stroke, medium-speed marine engine from Sulzer. The impact of selected fault in the injection system on the diagnostic parameters was researched and a FIS (Fault Isolation System) matrix was built on this basis.

Open access
Energy State Impact on Friction and Wearing in Combustion Engines

Abstract

Friction pairs are designed from elements, where is very difficult to define in unequivocal way all optimal parameters. Research on stability of friction pairs are focused on the surface and the top layer of surface in the parts. The main goal is find new solutions to design and material, thereby achieving one million kilometres of mileage to main repair in the case of internal combustion engines. The biggest structural difficulties are noticeable in friction pairs where we can observe sliding and returning motion, which is also connected with sealing function. Piston – ring – cylinder assembly of combustion engine has many friction pair’s examples, also one of them, which decide about fastness to wear. A typical example of such a pair is first sealing ring – cylinder sleeve, called further in piston – rings – cylinder unit in combustion engine. Engineers are currently seeking an additional factor, which would be unable to gain the reduction of tangential force by reducing the friction coefficient in elements of friction pair during operations. Such a factor may be the surface free energy that results from molecular structure and nature of the bonds between the molecules present in the material. Components of surface free energy determine the tribological properties of the material, which is reflected in the stability of the units. The work aims to show the possibilities and benefits of the application of this new method in order to reduce wearing, which is consistent with the observed trend of technology development.

Open access
Trimming Surfaces in the Automatic Plane Control Process

Abstract

The directions and speed of development of plane avionics systems are determined by three factors: economical consideration, required safety levels, and optimized working conditions for the pilot. This article presents the concept of a system in which the automatic control and stabilization process is effected because of coordinated deflections of trimming surfaces: the rudder, the elevator, and the ailerons. In particular, this article presents the structure of the system in the longitudinal movement steering channel by way of deflection of the trimmer of the elevator. Furthermore, it discusses the results of numerical model simulations, which are compared to the results obtained during in-flight tests. Additionally, this article specifies general technical requirements for the servomechanisms intended for the system class discussed herein.

Selection of sufficiently large amplification makes control the plane with relatively small deflections of the trimmer. In particular, relationship between the deflection of the elevator and the deflection of trimmer, view of a tail plane and dimensions of the elevator trimmer, the structure and results of the pitch angle control system and simulation are presented in the article.

Open access
Modelling of a Permanent Magnet Motor with an Inverter in a Drive System of a Car – Part II

Abstract

The article presents a mathematical model of a permanent magnet motor, powered by a three-phase source of sinusoidal voltage, and a control method. Cooperation between numerical integration algorithms in the differential equation system of the motor and an inverter has been verified. The results of numerical simulations are presented in a graphic form. This article is an extension of the publication [12], in which a model of a drive system was proposed, consisting of: a battery, a supercapacitor and a method of controlling these energy sources during a driving cycle of a vehicle. For vector control, the mathematical model of a synchronous machine in the dq coordinate system is the most common one. The most important feature of this control method is the fact that the iq component of the rotor current vector determines the value of motor torque, and the component id – the value of magnetic flux. In the article, the emphasis is put on how inverters work. Their basic task is to generate such currents iabc or voltages uabc to obtain torque without ripples. It leads to development of different control concepts for achieving this goal, which are related to the modelling of magnetic fluxes in a stator and in an inverter.

Open access
Organization of the Highway Strip Repair Process

Abstract

The article presents the possibilities of advance development of detailed organization-technical plans for the repair of Highway Strips, which will enable their effective use, particularly during combat operations – while maintaining the required time and technical standards at the same time. The main objectives of Highway Strips were presented; their role in securing military aviation activities and historical conditions for their creation. The concept of HS (Highway Strip) was defined along with the modern principles for their construction, modernization and renovation. Based on a selected example, the principles for evaluating the technical condition of their pavement and the repair possibility assessment were presented. At the same time, typical damage to HSs and factors affecting such damage were presented. Next, the methods and technologies for repairing various types of bituminous pavement damage repairs were discussed, with particular emphasis on the methods of repairing cracks, surface damage, deep damage and asphalt renovation. A schedule for the “Wielbark” highway strip was also developed, and the necessary calculations of the repair times, as well as the resources and resources for securing these operations were made. The article is concluded with a short summary and a proposal for further work, aimed at inhibiting the destructive processes of Highway Strips in Poland.

Open access
High Voltage Batteries Diagnostic

Abstract

Hybrid vehicles history begins between XIX and XX century because then has been constructed first hybrid vehicle project. The first men who produced electric propulsion mounted in front hubs connected with generator powered by spark ignition engine was Ferdynand Porsche. Vehicle was called Lohner – Porsche Electromobile. The first en masse produced hybrid vehicle was the first generation Toyota Prius. These model premiere was in 1996, and production started one year later. Vehicle was equipped in 1,5 dcm 58 hp spark ignition engine with added electric propulsion generated 40 mechanical hp. There has been mounting 72 hp spark ignition engine and 44 hp electric generator since 2000. Fuel consumption of these model was 5 liter on 100 km. Beginning XXI century 95% hybrid vehicles were Toyota Prius. The biggest competitor of Toyota Prius was Honda Insight. Lexus and Mercedes started producing hybrid vehicles few years later. The most popular brands selling hybrid vehicles are Toyota and Lexus – Toyota Motor Corporation.

Article describes high voltage battery example diagnostic possibilities in a hybrid or electric vehicle. Constructing vehicle models using two propulsion systems (spark ignition engine and electric generator) cause development and increase control system devices. The measurements has been made by using various diagnostic devices for example: diagnostic scanner mega macs 66, high voltage battery tester. Reading faults code is not enough so it is necessary to use data list what describes this article.

Open access
Impact of the Driver Behaviour on the Energy Recuperation in an Electric Vehicle

Abstract

In recent years, energy recuperation systems have been used more and more often. This is due to the rapid development of electric and hybrid cars. In view of the growing technology that allows for a recuperation system efficiency increase, it is important to consider whether the weakest link is in this case not the driver and his ability to customize the driving style to the needs of energy recovery. This article attempts to answer this question. For that purpose, the special road tests were conducted in a real urban traffic. Two drivers were involved, each of whom used alternating recovery and non-recovery driving style. In total twelve road tests, realisations have been completed. The results of the measurements were entered into a mathematical model that simulated the work of the energy recuperation system. It allowed estimating how different recovery systems can work in the conditions of conducted tests. On this basis, an analysis was made both in terms of the total amount of energy that can be recovered in the case of recuperative and non-recuperative driving, and analysis of the recuperation system working and the real impact of the driver’s driving style on the energy stored in the car’s battery. Basis on the conducted considerations authors noted that use of recuperative driving technique could increase the amount of stored braking energy on average by 60%. It was also seen a significant impact on the energy waveform in the battery.

Open access
Physicochemical Properties of Fuel Compositions Obtained from Diesel Fuel and Different Kinds of Fatty Raw Material

Abstract

Increased interest in development of alternative fuels used to power combustion engines is caused by excessive use of fuels obtained from mineral sources. Depletion of resources, political aspects as well as the negative impact on the environment are commonly discussed issues in relation to fossil fuels. On the other hand, biodegradability, lower toxic components emissions and interchangeability with mineral fuels are commonly described benefits related to biodiesel, interpreted as fatty acid methyl esters obtained from fatty raw material. Also the multiplicity of raw materials that can be used for production promotes popularization of the biodiesel. However the variety of raw materials can have significant impact on the number of physicochemical properties of alternative fuels due to the differences in molecular structures forming given type of raw material.

The article presents analysis of properties of different types of biodiesel and its mixtures with diesel according to the outlines presented in the quality standards for mineral and alternative fuels. Alternative fuels were produced in the laboratory setup from swine, poultry, rape and sunflower fatty raw material. Such parameters as: density, kinematic viscosity, flash point, acid value, oxidation stability, cold filter plugging point, sulphur content, water content and total contamination were examined, based on the results, the quality of the biofuels was evaluated. Study confirms that biofuels derived from plant origin fatty raw material present favorable results in the aspect water content, total contamination, acid value and cold flow properties, thus biofuels derived from animal origin raw fatty material presents lower density and sulphur content.

Open access
The Application of Friction Stir Welding (FSW) of Aluminium Alloys in Shipbuilding and Railway Industry

Abstract

The article describes possibilities of application of friction stir welding (FSW) in shipbuilding and railway industry. Actually, in these sectors of industry more and more often modern construction materials are used. The biggest restriction of implementing new materials is technological possibility of joining them. One of construction materials used in the shipbuilding is aluminum, mainly its alloy of 5xxx-aluminium-magnesium series. Its application is justified by good corrosion resistance in seawater and good mechanical attributes. Thanks to susceptibility to plastic treatment, one gains good mechanical attributes with thrice-smaller density than a density of steel, what causes triple reduction of weight of aluminum construction relative to steel one. Alloys of 5xxx series are well weldable. It is generally known that welding is not a good way to joint metals, especially the aluminum. The application of FSW with mixing allows one to change approach to production of aluminum constructions. Using aluminum plates prefabricated with FSW method allows one to reduce time needed for installation of construction and considerably decreases the production costs. The article describes technology and directions of development of friction welding of aluminum alloys of 5xxx series using FSW method. There is also shown analysis of its usefulness in ship and railway industry and comparison of mechanical attributes of weld made with electric arc using MIG (135), TIG (141) method and FSW method.

Open access