Search Results

You are looking at 21 - 23 of 23 items for :

Clear All
Open access

V. Peneva, G. Urek, S. Lazarova, S. Širca, M. Knapič, M. Elshishka and D. Brown

nematodes. Rev. Nematol., 6: 133–141 [49] Tsvetkov, I., Choleva, B., Yankulova, M., Colova, V., Atanasov, A. (2003): Evaluation of transgenic grapes tolerance toward grapevine fanleaf virus. Proceedings of the 14th ICVG Conference, 231–232 [50] Urek, G., Širca, S., Karssen, G. (2003a): A review of plant-parasitic nematodes in Slovenia. Nematology, 5: 391–403 http://dx.doi.org/10.1163/156854103769224386 [51] Urek, G., Širca, S., Kox, L., Karssen, G. (2003b): First report of the dagger nematode

Open access

A. Carreño, A. Vidal-Ferrándiz, D. Ginestar and G. Verdú

matrix W in equation ( 13 ) is chosen as the previous approximation for the invariant subspace, that is, W = Z ¯ ( k ) $\begin{array}{} \displaystyle W=\bar{Z}^{(k)} \end{array}$ . Using the definition of K ( k ) on ( 10 ), system ( 13 ) is decoupled into the q linear systems ( M − L λ i ( k ) L Z ¯ ( k ) Z ¯ ( k ) † 0 ) ( Δ z ¯ i ( k ) − Δ λ i ( k ) ) = ( M z ¯ i ( k ) − L z ¯ i ( k ) λ i ( k ) 0 ) $$\begin{array}{} \displaystyle \begin{pmatrix} M-L\lambda_i^{(k)} & L\bar{Z}^{(k)}\\ \bar{Z}^{(k)^{\dagger}} &0 \end{pmatrix} \begin{pmatrix}\Delta \bar

Open access

Linli Zhu, Yu Pan and Jiangtao Wang

˜ − D T u ) T ( V ˜ T V ˜ ) † ( V ˜ T y ˜ − D T u ) , ‖ u ‖ ∞ ≤ λ , D T u ∈ span ( V ˜ T ) . $$\begin{array}{c} \min\limits_{u\in\mathbb{R}^{p-1}}\frac{1}{2}(\tilde{{\bf V}}^{T}\tilde{{\bf y}}-{\bf D}^{T}{\bf u})^{T}(\tilde{{\bf V}}^{T}\tilde{{\bf V}})^{\dagger}(\tilde{{\bf V}}^{T}\tilde{{\bf y}}-{\bf D}^{T}{\bf u}),\\ \|u\|_{\infty}\le\lambda,{\bf D}^{T}{\bf u}\in {\rm span}(\tilde{{\bf V}}^{T}). \end{array}$$ The other version of ontology framework can be simply expressed as min w 1 2 | | y − V w | | + λ | | w | | 1 . $$\begin{array}{} \displaystyle {\min