Search Results

21 - 30 of 111 items :

  • Cartesian product x
  • Algebra and Number Theory x
Clear All
The Axiomatization of Propositional Linear Time Temporal Logic

. Temporal Logic and State Systems . Springer-Verlag, 2008. [10] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics , 1( 1 ):115-122, 1990. [11] Andrzej Trybulec. Defining by structural induction in the positive propositional language. Formalized Mathematics , 8( 1 ):133-137, 1999. [12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics , 1( 1 ):67-71, 1990. [13] Edmund Woronowicz. Many-argument relations. Formalized

Open access
The Geometric Interior in Real Linear Spaces

Padlewska. Families of sets. Formalized Mathematics , 1( 1 ):147-152, 1990. [10] Karol Pąk. Affine independence in vector spaces. Formalized Mathematics , 18( 1 ):87-93, 2010, doi: 10.2478/v10037-010-0012-z. [11] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics , 1( 1 ):115-122, 1990. [12] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics , 1( 3 ):581-588, 1990. [13] Wojciech A. Trybulec. Partially

Open access
On the Lattice of Intervals and Rough Sets

. [5] Beata Padlewska. Families of sets. Formalized Mathematics , 1( 1 ):147-152, 1990. [6] Z. Pawlak. Rough sets. International Journal of Parallel Programming , 11:341-356, 1982, doi:10.1007/BF01001956. [7] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics , 1( 1 ):97-105, 1990. [8] Zinaida Trybulec. Properties of subsets. Formalized Mathematics , 1( 1 ):67-71, 1990. [9] Y. Y. Yao. Interval-set algebra for qualitative

Open access
Implicit Function Theorem. Part I

. Springer, Berlin, 2003. [3] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191-198, 2015. doi: 10.1007/s10817-015-9345-1. [4] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. Formalized Mathematics, 12(3):269-275, 2004. [5] Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. Cartesian products of family of real linear spaces. Formalized Mathematics, 19(1):51-59, 2011. doi: 10.2478/v10037

Open access
Formal Languages - Concatenation and Closure

. [7] Karol Pąak. The Catalan numbers. Part II. Formalized Mathematics , 14(4):153-159, 2006. [8] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics. [9] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics , 1(1):115-122, 1990. [10] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics , 1(1):9-11, 1990. [11] Zinaida Trybulec. Properties of subsets. Formalized Mathematics , 1

Open access
Regular Expression Quantifiers — m to n Occurrences

References [7] Andrzej Trybulec. Subsets of complex numbers. To appear in Formalized Mathematics. [8] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics , 1(1):115-122, 1990. [9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics , 1(1):9-11, 1990. [10] Michał Trybulec. Formal languages - concatenation and closure. Formalized Mathematics , 15(1):11-15, 2007. [11] Zinaida

Open access
Cell Petri Net Concepts

Nakamura. On Cell Petri Nets. Journal of Applied Functional Analysis, 1996. [10] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics , 1(1):115-122, 1990. [11] Andrzej Trybulec. Enumerated sets. Formalized Mathematics , 1(1):25-34, 1990. [12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics , 1(1):67-71, 1990. [13] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics , 1(1):73-83, 1990

Open access
Stone Lattices

R eferences [1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics , 1( 2 ):377–382, 1990. [2] Grzegorz Bancerek. Filters – part II. Quotient lattices modulo filters and direct product of two lattices. Formalized Mathematics , 2( 3 ):433–438, 1991. [3] Grzegorz Bancerek. Ideals. Formalized Mathematics , 5( 2 ):149–156, 1996. [4] Grzegorz Bancerek. Complete lattices. Formalized Mathematics , 2( 5 ):719–725, 1991. [5] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics , 1( 1 ):91–96, 1990. [6] Grzegorz

Open access
Representation Theorem for Stacks

. Grażyna Mirkowska and Andrzej Salwicki. Algorithmic Logic. PWN-Polish Scientific Publisher, 1987. Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics , 1( 3 ):441-444, 1990. Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics , 1( 1 ):115-122, 1990. Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics , 1( 3 ):569-573, 1990

Open access
Small Inductive Dimension of Topological Spaces

topological spaces. Formalized Mathematics , 17( 3 ):201-205, 2009, doi: 10.2478/v10037-009-0024-8. [15] Alexander Yu. Shibakov and Andrzej Trybulec. The Cantor set. Formalized Mathematics , 5( 2 ):233-236, 1996. [16] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics , 1( 1 ):115-122, 1990. [17] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics , 2( 4 ):535-545, 1991. [18] Michał J. Trybulec. Integers

Open access