Search Results

21 - 30 of 149 items :

  • Physics, other x
Clear All

. Food Res. 52 (2008) 7–25. DOI: 10.1002/mnfr.200700412 11. Sanduja, R., G.A.S. Ansari, and P.J. Boor: 3-Hydroxypropylmercapturic Acid: A Biologic Marker of Exposure to Allylic and Related Compounds; J. Appl. Toxicol. 9 (1989) 235–238. 12. Mascher, D.G., H.J. Mascher, G. Scherer, and E.R. Schmid: High-Performance Liquid Chromatographic-Tandem Mass Spectrometric Determination of 3-Hydroxypropylmercapturic Acid in Human Urine; J. Chromatogr. B: Biomed. Sci. Appl. 750 (2001) 163–169. 13. Schettgen, T., A. Musiol, and T. Kraus: Simultaneous Determination of Mercapturic

. 336 81 89 10.1016/j.scitotenv.2004.06.002 4. Tykva, R., & Podracká, E. (2005). Bioaccumulation of 226 Ra in the plants growing near uranium facilities. Nukleonika , 50 (Suppl. 1), S25–S27. Tykva R. Podracká E. 2005 Bioaccumulation of 226 Ra in the plants growing near uranium facilities Nukleonika 50 Suppl. 1 S25 S27 5. Liu, J., Wang, J., Li, H. C., Shen, C. C., Chen, Y. H., Wang, C. L., Ye, H. Z., Long, J. Y., Song, G., & Wu, Y. J. (2015). Surface sediment contamination by uranium mining/milling activities in South China. Clean-Soil Air Water , 43 , 414

a manganese mine Radiat. Meas. 44 300 305 10.1016/j.radmeas.2009.03.014 6. Somlai, J., Hakl, J., Kávási, N., Szeiler, G., Szabó, P., & Kovács, T. (2011). Annual average radon concentration in the show caves of Hungary. J. Radioanal. Nucl. Chem. , 287 , 427–433. 10.1007/s10967-010-0841-9 . Somlai J. Hakl J. Kávási N. Szeiler G. Szabó P. Kovács T. 2011 Annual average radon concentration in the show caves of Hungary J. Radioanal. Nucl. Chem. 287 427 433 10.1007/s10967-010-0841-9 7. Field, M. S. (2007). Risks to cavers and cave workers from exposures to low

. Kávási N. Kranrod C. Sorimachi A. Takahashi H. Miyahara N. Ishikawa T. 2009 International intercomparisons of integrating radon detectors in the NIRS radon chamber Appl. Radiat. Isot. 67 9 1691 1696 10.1016/j.apradiso.2009.03.006 6. Clouvas, A., Takoudis, G., Xanthos, S., Potiriadis, C., & Kolovou, M. (2009). Indoor radon measurements in areas of northern Greece with relatively high indoor radon concentrations. Radiat. Prot. Dosim. , 136 (2), 127–131. 10.1093/rpd/ncp154 . Clouvas A. Takoudis G. Xanthos S. Potiriadis C. Kolovou M. 2009 Indoor radon measurements in

loJ 01 1. G le ic h e K la ss e n st ü c k z a h l K la ss en za hl St üc kz ah l G es am t ge fu nd en fü r S ta t. ge fu nd en fü r S ta t. 1 10 10 25 0 I 25 0 2 10 10 25 0 25 0 3 9 9 25 0 25 0 4 10 10 25 0 25 0 5 8 8 25 0 25 0 0 9 9 25 0 I 25 0 2. D iv is o r d e r K la ss e n st ü c k z a h l 1 -2 1 9. 9 50 0 35 6 2 9 9 50 0 33 3 3 10 9 50 0 31 5 4 8 8 50 0 29 4 5 10 9 50 0 26 2 0 9 I 9 50 0 31 2 3. D iv is o r d e r K la ss e n st ü c k z a h l1 3 -1 6 1 10

. Smoliński, T., Rogowski, M., Brykała, M., Pyszynska, M., & Chmielewski, A. G. (2018). Studies on hydrometallurgical processes using nuclear techniques to be applied in copper industry. I. Application of 64Cu radiotracer for investigation of copper ore leaching. Nukleonika, 63(4), 123-129. DOI: 10.2478/nuka-2018-0015. 24. Bujdoso, E., Feher, I., & Kardos, G. (1973). Activation and decay tables of radioisotopes. Amsterdam, New York: Elsevier. 25. Jaroszewicz, J., Marcinkowska, Z., & Pytel, K. (2014). Production of fi ssion product 99Mo using high-enriched uranium plates in

References 1. OECD-NEA. (2011). Potential benefi ts and impacts of advanced nuclear fuel cycles with actinide partitioning and transmutation. Issy-les-Moulineaux, France: O. Publishing OECD-NEA. (NEA no. 6894). 2. González-Romero, E. M. (2011). Impact of partitioning and transmutation on the high level waste management. Nucl. Eng. Des., 241, 3436-3444. DOI: 10.1016/j.nucengdes.2011.03.030. 3. Modolo, G., Geist, A., & Miguirditchian, M. (2015). Minor actinide separations in the reprocessing of spent nuclear fuels: recent advances in Europe. In R. Taylor (Ed

References 1. Mincher, B. J., Modolo, G., & Mezyk, S. P. (2009). The effects of radiation chemistry on solvent extraction: 1. Conditions in acidic solution and a review of TBP radiolysis. Solvent Extr. Ion Exch., 27, 1-25. DOI: 10.1080/07366290802544767. 2. Tripathi, S. C., & Ramanujam, A. (2003). Effect of radiation-induced physicochemical transformations on density and viscosity of 30% TBP-n-dodecane- -HNO3 system. Separ. Sci. Technol., 38, 2307-2326. DOI: 10.1081/SS-120021626. 3. Bourg, S., Poinssot, C., Geist, A., Cassayre, L., Rhodes, C., & Ekberg, C. (2012

.10.026. 15. Bourg, S., Hill, C., Caravaca, C., Rhodes, C., Ekberg, C., Taylor, R., Geist, A., Modolo, G., Cassayre, L., Malmbeck, R., Harrison, M., de Angelis, G., Espartero, A., Bouvet, S., & Ouvrier, N. (2011). ACSEPT - Partitioning technologies and actinide science: Towards pilot facilities in Europe. Nucl. Eng. Des., 241, 3427-3435. DOI: 10.1016/j.nucengdes.2011.03.011. 16. Lewis, F. W., Harwood, L. M., Hudson, M. J., Drew, M. G. B., Hubscher-Bruder, V., Videva, V., Arnaud-Neu, F., Stamberg, K., & Vyas, S. (2013). BTBPs versus BTPhens: Some reasons for their

Kenkyu Hokoku 110, 127 (1968); ref.: C. A. 69, 93 765 (1968). 53· Keith, C. H., und Tesh, P. G.: Tob. Sei. 9, 61 (1965). 54· Kobashi, Y., Watanabe, M., und Yamashita, Y.: Agr. Biol. Chem. 27, A 25 (1963). 55· Kröller, E.: Dtsch. Lebensm. Rdsch. 63, 303 (1967). 56. Kuffner, F., Schick, K., und Bühn, H.: Mh. Chemie 87, 749 (1956). 57· Kuhn, H.: Fachl. Mitt. österr. Tabakregie No. 5, 73 (1964). 58. Lehmann, K. B., und Gundermann, K.: Arch. Hyg. 76, 98 (1912). 59· Masuda, Y., Hoffmann, D., und Wynder, E. L.: 22. Tobacco Chemists' Research Conference, Riebmond Va. (1968