Search Results

21 - 30 of 64 items :

  • "magnesium alloys" x
Clear All

References 1. Vratna, J., et al., Room temperature corrosion properties of AZ31 magnesium alloy processed by extrusion and equal channel angular pressing. J. Mater. Sci. 2013, 48, 4510-4516. 2. Bukovinova, L., Hadzima, B., Electrochemical characteristics of magnesium alloy AZ31 in Hank’s solution. Corros. Eng. Sci. Technol. 2012, 47, 352-357. 3. Jafari, H., et al., EIS study of corrosion behavior of metallic materials in ethanol blended gasoline containing water as a contaminant, Fuel 2011, 90, 1181-1187. 4. Mouanga, M., Puiggali, M., Devos, O., EIS and LEIS

References 1. Witte, F., The history of biodegradable magnesium implants: A review. Acta Biomaterialia. 2010, 1680-1692. 2. Al-Zubaydi, A.,et al. Superplastic behaviour of AZ91 magnesium alloy processed by high-pressure torsion. Materials Science and Engineering A 2015, 637(1-2), 1-11. 3. Lee, H., et al.Evolution in hardness and texture of a ZK60A magnesium alloy processed by high-pressure torsion. Materials Science and Engineering A 2015, 630, 90-98. 4. Suwas, S., Gottstein, S., Kumar. R., Evolution of crystallographic texture during equal channel angular

5. References 1. Aniołek K., Kupka M., Barylski A.: Characteristics of the tribological properties of oxide layers obtained via thermal oxidation on titanium Grade 2, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 233/2019, DOI 10.1177/1350650118769116. 2. Barylski A., Aniołek K., Kupka M., Dworak M.: The effect of precipitation hardening on the structure and mechanical and tribological properties of magnesium alloy WE54. Vacuum, Vol. 139/2017, DOI 10.1016/j.vacuum.2017.02.015. 3. Devojno O.G., Feldshtein E

References 1. SUGANUMA, K., KIM S. J., KIM K. S., 2009. High-Temperature Lead-Free Solders: Properties and Possibilities. JOM, Vol. 61, No. 1, pp. 64-71 2. KROUPA, A., ANDERSSON, D., HOO, N. et al., 2012. Current Problems and Possible Solutions in High-Temperature Lead-Free Soldering. Journal of Materials Engineering and Performance, Vol. 21(5), pp. 629-637 3. MA, L., LONG, W., et al., 2013. Development of a Binary Zn-Based Solder Alloy for Joining Wrought Magnesium Alloy AZ31B. ASM International, Vol. 22, Is. 1, pp. 118-122 4. MA, L., HE, D.Y., LI, X.Y., JIANG

. Corrosion behaviour of AM60 magnesium alloys containing Ce or La under thin electrolyte layers. Part 1: Microstructural characterization and electrochemical behaviour. Corrosion Science 2010, 52, 627-738 5. Xiao, K.; et al. Investigation on the Electrochemical Behaviour of Copper Under HSO3 - containing Thin Electrolyte Layers. Int. J. Electrochem. Sci . 2012 , 7, 7503-7515 6. Fogl, J.; Volka, K. Analytické tabulky , 6th ed.; VŠCHT Praha: Praha, 1995 7. Jones, D. A. Principles and prevention of corrosion , 2nd ed.; Prentice-Hall, Inc.: Upper Saddle River, 1996

corrosion of aluminium–magnesium alloys,” Corrosion Science 2013 , 70, 290-293. 4. R. H. Jones, V. Y. Gertsman, J. S. Vetrano, and C. F. Windisch Jr, “Crack-particle interactions during intergranular stress corrosion of AA5083 as observed by cross-section transmission electron microscopy,” Scripta Materialia 2004 , 50 (10), 1355-1359. 5. E. Brillas, P. L. Cabot, F. Centellas, J. A. Garrido, E. Pérez, and R. M. Rodríguez, “Electrochemical oxidation of high-purity and homogeneous Al–Mg alloys with low Mg contents,” Electrochimica Acta 1998 , 43 (7), 799-812. 6. R. S

), India, 2008. 20. Hadzima, B.; Mhaede, M.; Pastorek, F. Electrochemical characteristics of calcium-phosphatized AZ31 Magnesium alloy in 0.9% NaCl Solution. J. Mat. Sci.: Mat. Med. 2014, 25, 1227-1237. 21. Jiang, X.P.; Wang, X.Y.; Li, J.X.; Li, D.Y.; Man, C.-S.; Shepard, M.J.; Zhai, T. Enhancement of fatigue and corrosion properties of pure Ti by sandblasting. Mat. Sci. Eng. A. 2006, 429, 30-35. 22. Mhaede, M.; Pastorek, F.; Hadzima, B. Infl uence of shot peening on corrosion properties of biocompatible magnesium alloy AZ31 coated by dicalcium phosphate dihidrate (DCPD

forming - 1. On the basic features of this process. Bulletin of the JSME , 22(168), 893-900, (1979). 4. Ambrogio, G., Filice, L., & Manco, G. L. Warm incremental forming of magnesium alloy AZ31. CIRP Annals - Manufacturing Technology , 57(1), 257-260, (2008). 5. Husmann, T., & Magnus, C. S. Thermography in incremental forming processes at elevated temperatures. Measurement: Journal of the International Measurement Confederation , 77, 16-28, (2016). 6. Fan, G., Gao, L., Hussain, G., & Wu, Z. Electric hot incremental forming: A novel technique. International Journal

References [1] W. Weibull, A statistical theory of the strength of materials, Proceeding of the Royal Swedish Institute of Engineering Research ,151,1 (1939). [2] J. Schijve, Statistical distribution functions and fatigue of structures, International Journal of Fatigue 27, 1031-1039, (2005) [3] S. Mohd, Y. Otsuka, Y. Miyashita, Y. Mutoh, Statistic characteristics of fatigue properties in magnesium alloy, Procedia Engineering 10, 1232, (2011) [4] Yan Lv, H.Cheng, Z. Ma, Procedia Engineering, Fatigue performances of glass fiber reinforced concrete in flexure ,31

., Zhang M. X.: The use of Al-Al2O3 cold spray coatings to improve the surface properties of magnesium alloys. Surface and Coatings Technology, Vol 204 (2009), 336-344. 12. Vargas F., Ageorges H., Fournier P., Fauchais P., López M.E.: Mechanical and tribological performance of Al2O3-TiO2 coatings elaborated by flame and plasma spraying. Surface & Coatings Technology, Vol 205 (2010), 1132-1136.