Search Results

21 - 30 of 150 items :

  • "efficiency" x
  • Process Engineering x
Clear All


The results of the studies on the influence of the phase transfer catalyst on the epoxidation of (Z,E,E)-1,5,9-cyclododecatriene (CDT) to 1,2-epoxy-5,9-cyclododecadiene (ECDD) in the H2O2/H3PW12O40 system by a method of phase transfer catalysis (PTC) were presented. The following quaternary ammonium salts were used as phase transfer catalysts: methyltributylammonium chloride, (cetyl)pyridinium bromide, methyltrioctylammonium chloride, (cetyl)pyridinium chloride, dimethyl[dioctadecyl(76%)+dihexadecyl(24%)] ammonium chloride, tetrabutylammonium hydrogensulfate, didodecyldimethylammonium bromide and methyltrioctylammonium bromide. Their catalytic activity was evaluated on the basis of the degree of CDT and hydrogen peroxide conversion and the selectivities of transformation to ECDD in relation to consumed CDT and hydrogen peroxide. The most effective PT catalysts were selected based on the obtained results. Among the onium salts under study, the epoxidation of CDT with hydrogen peroxide proceeds the most effectively in the presence of methyltrioctylammonium chloride (Aliquat® 336) and (cetyl)pyridinium chloride (CPC). The relatively good results of CDT epoxidation were also achieved in the presence of Arquad® 2HT and (cetyl)pyridinium bromide

materials with 2-deoxyglucose-resistant mutant strains of Rhizopus oryzae. Bioresource Technol . 107, 363–367. DOI: 10.1016/j.biortech.2011.11.117. 7. Choi, J.-H., Fukushi, K. & Yamamoto, K. (2008). A study on the removal of organic acids from wastewaters using nanofiltration membranes. Sep. Purif. Technol. 59(1), 17–25. DOI: 10.1016/j.seppur.2007.05.021. 8. He, Y., Chena, G., Ji, Z. & Li, S. (2009). Combined UF– NF membrane system for filtering erythromycin fermentation broth and concentrating the filtrate to improve the downstream efficiency. Sep. Purif. Technol

the anticorrosion efficiencies of pigments based on condensed phosphates and polyphosphosilicates. Anti-corr. Meth. Mater. 50, 82–90. 10.1108/00035590310463957. 4. del Amo, B., Romagnoli, R., Deyá, C. & González, J. (2002). High performance water-based paints with non-toxic anticorrosive pigments. Prog. Org. Coat. 45, 389–397. DOI: 10.1016/S0300-9440(02)00125-X. 5. Ahmed, N., Mohamed, M., Mabrouk, M. & ElShami, A. (2015). Novel anticorrosive pigments based on waste material for corrosion protection of reinforced concrete steel. Constr. Build. Mater. 98, 388

–151. DOI: 10.1016/S0962-3373(03)00026-2. 8. Kay, O. & Buennagel, T. (2016) Targeting improving performance and conversion efficiency in nitric acid plants. International Fertiliser Society Proceedings No. 787. 9. Najlepsze dostępne techniki (BAT). Wytyczne dla Branży Chemicznej w Polsce. Przemysł Wielkotonażowych Chemikaliów Nieorganicznych, Amoniaku, Kwasów i Nawozów Sztucznych Wersja II, Ministerstwo Środowiska, (2005) [in Polish]. 10. Abbasfard, H., Ghanbari, M., Ghasemi, A., Ghahraman

on the toxic effects of chloride on the biooxidation efficiency of pyrite. J. Hazard. Mate. 172 (2-3), 1273-1281. DOI: 10.1016/j.jhazmat.2009.07.133 16. Gahan, C.S., Sundkvist, J.E., Engström, F. & Sandstrom, A. (2011) Utilisation of steel slags as neutralising agents in biooxidation of a refractory gold concentrate and their influence on the subsequent cyanidation. Res. Cons. Recycl. 55(5), 541-547. DOI: 10.1016/j.resconrec.2011.01.005. 17. Hong, F.F., He, H., Liu, J.Y., Tao, X.X., Zheng, L. & Zhao, Y.D. (2013). Comparison analysis of coal biodesulfurization and

. Proceed. ASME Inter. Manufact. Sci. Enginee. Conference 2009. MSEC2009, October 4–7, 2009. West Lafayette. Indiana. USA. pp. 43–48. 18. Singh, B.P., Nayak., S., Nanda. K., Bikash, K.J., Bhattacharjee, S. & Besra, L. (2013). The production of a corrosion resistant graphene reinforced composite coating on copper by electrophoretic deposition. Carbon 61, 47–56. DOI: 10.1016/j.carbon.2013.04.063. 19. Kaiyue, Li., Guoding Chen, Deng Liu. (2016). Study of the influence of lubrication parameters on gear lubrication properties and efficiency. Ind. Lubr. Tribol. 68(6). 647

-2691.DOI:10.1016/j.apsusc.2005.03.231. Macdonald, J. R. (1987). Impedance spectroscopy and its use in analyzing the steady-state AC response of solid and liquid electrolytes. J. Electroanal. Chem. 223,25-0.DOI:10.1016/0022-0728(87)85249-X. Pang, J., Briceno, A. & Chander, S. (1990).A Study of Pyrite/Solution Interface by Impedance Spectroscopy. J. Electrochem. Soc. 137, 3447-3455.DOI:10.1149/1.2086249. Lagrenee, M., Mernari, B., Bouanis, M., Traisnel, M. & Bentiss, F. (2002). Study of the mechanism and inhibiting efficiency of 3,5-bis(4-methylthiophenyl)-4H-1

Corrosion inhibition performance of mild steel in nitric acid solution containing different concentration of anisalidine derivative Schiff bases viz. N- (4-nitro phenyl) p-anisalidine (SB1), N- (4-chloro phenyl) p-anisalidine (SB2), N- (4-phenyl) p-anisalidine (SB3), N- (4-methoxy phenyl) p-anisalidine (SB4), N- (4-hydroxy phenyl) p-anisalidine (SB5) has been investigated using mass loss, thermometric and potentiostate polarization technique. Inhibition efficiencies of Schiff bases have been evaluated at different acid strength. The inhibition efficiency was found larger than their parent amines. Inhibition efficiencies of synthesized Schiff bases increase with inhibitor concentration. Inhibition efficiency increases up to 98.32% with ansalidine derivative Schiff base.

LITERATURE CITED 1. Yang, X.Y., Zhang, X.Y., Liu, Z.F., Ma, Y.F., Huang, Y. & Chen, Y. (2008). High-Efficiency Loading and Controlled Release of Doxorubicin Hydrochloride on Graphene Oxide. J. Phys. Chem. C 112 , 17554–17558. DOI: 10.1021/jp806751k. 2. Chen, M.X., Li, B.K., Yin, D.K., Liang, J., Li, S.S. & Peng, D.Y. (2014). Layer-by-layer Assembly of Chitosan Stabilized Multilayered Liposomes for Paclitaxel Delivery. Carbohydr. Polym. 111, 298–304. DOI: 10.1016/j.carbpol.2014.04.038. 3. Sugahara, K.N., Teesalu, T., Karmali, P.P., Kotamraju, V.R., Agemy, L

.10.076. 17. Wang, X., Lin, L., Xie, J., Yan, X., Xiao, W. & Tian, M. (2018). Adsorption efficiency of pentafluorobenzene on ionic liquids-based silicas. Pol. J. Chem. Technol. 20, 47–52. DOI: 10.2478/pjct-2018-0037. 18. Fang, L., Tian, M., Yan, X. & Xiao, W. (2018). Isolation of aflatoxin B1 from moldy foods by solid-phase extraction combined with bifunctional ionic liquid-based silicas. J. Anal. Methods Chem. 2018, 8427580. DOI: org/10.1155/2018/8427580. 19. Yang, S., Zhang, Q., Hu, Y., Ding, G. & Wang, J. (2019). Synthesis of maleimide modified imidazole derivatives