Search Results

You are looking at 11 - 16 of 16 items for :

  • Artificial Intelligence x
Clear All
Open access

Andrzej Gałecki, Lech Grzesiak, Barłomiej Ufnalski, Arkadiusz Kaszewski and Marek Michalczuk

European Conf. on Electronics and Applications (EPE 2011), 2011, 1-10. [15] BOTTRELL N., GREEN T.C., Comparison of Current-Limiting Strategies During Fault RideThrough of Inverters to Prevent Latch-Up and Wind-Up, IEEE Transactions on Power Electronics, 2014, 29, 7, 3786-3797. [16] SZYPULSKI M., IWAŃSKI G., Sensorless State Control of Stand-Alone Doubly Fed Induction Generator Supplying Nonlinear and Unbalanced Loads, IEEE Transactions on Energy Conversion, 2016, PP, 99, 1-1. [17] HARNEFORS L., YEPES A.G., VIDAL A

Open access

Shady S. Refaat and Haitham Abu-Rub

-393. [13] PENG S., JIAN L., YUANHONG W., YONGLONG Y., TIANYAN J., Condition assessment of wind turbine generators based on cloud model, IEEE International Conference on Solid Dielectrics (ICSD), 2013, 146-151. [14] WANG, SONG, XIANG-LONG LI, JUN-HAO LI, XIAO-HUI ZHAO, YAN-MING L.I., Experimental Study for Outside Propagation Characteristic of the UHF Signal Emitted by Partial Discharge in Transformers, Electrical Insulation Conference (EIC), 2014, 286-289. [15] MIRZAIE M., GHOLAMI A., TAYEBI H.R., Insulation Condition Assessment of Power

Open access

Piotr Sobański

REFERENCES [1] M endes A.M.S., C ardoso A.J.M., Fault-tolerant operating strategies applied to three-phase induction-motor drives , IEEE Transactions on Industrial Electronics, 2006, 53(6), 1807–1817. [2] F reire N.M.A., C ardoso A.J.M., A fault-tolerant direct controlled PMSG drive for wind energy conversion systems , IEEE Trans. Ind. Electron., 2014, 61(2), 821–834. [3] S obanski P., O rlowska -K owalska T., Analysis of space vector modulation technique in inverter-fed fault-tolerant induction motor drive , IEEE Int. Conf. Power

Open access

Jacek Listwan

References Amimeur, H., Abdessemed, R., Aouzellag, D., Merabet, E. and Hamoudi, F. (2010). A Sliding Mode Control associated to the Field-Oriented Control of Dual- Stator Induction Motor Drives. Journal of Electrical Engineering, 10(3), pp. 7-12. Beltran, B., Benbouzid, M. and Ahmed-Ali, T. (2012). Second-Order Sliding-Mode Control of a Doubly Fed Induction Generator Driven Wind Turbine. IEEE Transactions on Energy Conversion, 27(2), pp. 261-269. Benelghali, S., Benbouzid, M., Charpentier, J., Ahmed- Ali, T. and

Open access

Tibor Vajsz, László Számel and Árpád Handler

Computer Science , Bhopal, pp. 1–5. Schmidt, I. and Veszpremi, K. (2005). Application of direct controls to variable-speed wind generators. In: 2005 International Conference on Industrial Electronics and Control Applications , Quito (Ecuador), pp. 1–6. Staudt, S., Stock, A., Kowalski, T., Teigelkötter, J. and Lang, K. (2015). Raw data based model and high dynamic control concept for traction drives powered by synchronous reluctance machines. In: 2015 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD) , Torino (Italy), pp. 204

Open access

Mesbaholdin Salami, Farzad Movahedi Sobhani and Mohammad Sadegh Ghazizadeh

–227. https://doi.org/10.1109/TPAMI.1979.4766909 [29] N. Amjady, F. Keynia, and H. Zareipour, “Wind power prediction by a new forecast engine composed of modified hybrid neural network and enhanced particle swarm optimization,” Sustainable Energy , vol. 2, no. 3, 2011, pp. 265–276. https://doi.org/10.1109/TSTE.2011.2114680 [30] T. P. Latchoumi, K. Balamurugan, K. Dinesh, and T. P. Ezhilarasi, “Particle swarm optimization approach for waterjet cavitation peening,” Measurement , vol. 141, 2019, pp. 184–189. https://doi.org/10.1016/j.measurement.2019