Search Results

11 - 20 of 20 items :

  • Spark plasma sintering x
Clear All
Halloysite reinforced epoxy composites with improved mechanical properties

. Imai, T., Naitoh, Y., Yamamoto, T. & Ohyanagi, M. (2006). Translucent Nano Mullite Based Composite Ceramic Fabricated by Spark Plasma Sintering. J. Cer. Soc. JPN 1325(114), 138–140. DOI: 10.2109/jcersj.114.138. 5. Wilson, I.R. (2004). Kaolin and halloysite deposits of China. Clay Miner. 1(39), 1–15. DOI: 10.1180/0009855043910116. 6. Guo, B., Zou, Q., Lei, Y. & Jia, D. (2009). Structure and Performance of Polyamide 6/Halloysite Nanotubes Nanocomposites. Polym. J. 10(41), 835–842. 7. Handge, U.A., Hedicke-Höchstötter, K. & Altstädt, V. (2010

Open access
Surface Treatment Proposals for the Automotive Industry by the Example of 316L Steel

]. Lipinski, T. (2015). Morphology of Impurities in Steel after Desulfurization and Vacuum Degassing, 14th International Scientific Conference: Engineering For Rural Development, pp. 795-800. Marnier, G., Keller, C., Noudem, J. and Hug, E. (2014). Functional properties of a spark plasma sintered ultrafine-grained 316L steel. Materials and Design, [online] Volume 63, pp. 663-640. Available at: https://www.sciencedirect.com/science/article/pii/S0261306914005020 [Accessed 2 Jul. 2014]. Moteshakker, A. and Danaee, I. (2016). Microstructure and

Open access
Porous Metallic Biomaterials Processing (Review) Part 1: Compaction, Sintering Behavior, Properties and Medical Applications

. Titanium with aligned, elongated pores for orthopedic tissue engineering applications, In: Journal of Biomedical Materials Research Part A, 84A (2) (2008) 402-412. [43] Y. Zhao, M. Taya, Y. Kang, A. Kawasaki, Compression behavior of porous NiTi shape memory alloy, Acta Mater. 53 (2005) 337–343. [44] A. Dudek, M. Klimas, Composites based on titanium alloy Ti-6Al-4V with an addition of inert ceramics and bioactive ceramics for medical applications fabricated by spark plasma sintering (SPS method), In: Materialwissenschaft Und Werkstofftechnik, 46 (3) (2015) 237

Open access
Research on the Properties of Co-Tic and Ni-Tic Hip-Sintered Alloys

on Ni/TiC composites by direct laser fabrication, Materials & Design , Vol. 30, Iss. 4. 1409–1412. 30. Zhang X.-H., Han J.-C., Du S.-Y., Wood J.V. (2000). Microstructure and mechanical properties of TiC-Ni functionally graded materials by simultaneous combustion synthesis and compaction, Journal of Materials Science , 35(8), 1925–1930. 31. Zohari S., Sadeghian Z., Lotfi B., Broeckmann C. (2015). Application of spark plasma sintering (SPS) for the fabrication of in situ Ni–TiC nanocomposite clad layer, Journal of Alloys and Compounds , 633, 479–483.

Open access
ZnFe2O4 Containing Nanoparticles: Synthesis and Magnetic Properties

.11.167 [23] N. Millot, S. Le Gallet, D. Aymes, F. Bernard, and Y. Grin, “Spark plasma sintering of cobalt ferrite nanopowders prepared by coprecipitation and hydrothermal synthesis,” Journal of the European Ceramic Society , vol. 27, no. 2–3, pp. 921–926, Jan. 2007. https://doi.org/10.1016/j.jeurceramsoc.2006.04.141 [24] B. Xue, R. Liu, Z.-D. Xu, and Y.-F. Zheng, “Microwave Fabrication and Magnetic Property of Hierarchical Spherical α-Fe 2 O 3 Nanostructures,” Chemistry Letters , vol. 37, no. 10, pp. 1058–1059, Oct. 2008. https://doi.org/10.1246/cl.2008

Open access
The Management and Potential Risk Reductionin the Processing of Rare Earths Elements

Production, 51, 1-22. Borra, C. R., et al.,2016. Selective recovery of rare earths from bauxite residue by combination of sulfation, roasting and leaching . Minerals Engineering, 92, 151-159. Cordier, D. J., Hedrick, J. B., 2012. Rare earths . US Geological Survey, Mineral Commodity Summaries. Dai, A. X., et al., 2016. Recycling of neodymium and dysprosium from permanent magnets . Penn Engineering. Deflorian, F., Ciaghi, L., Kazior, J., 1992. Electrochemical Characterization of Vacuum Sintered Copper Alloyed Austenitic Stainless-Steel . Werkst

Open access
Analysis of the Influence of the Heat-Absorbing Surface of an Air-Cooled Solar Collector on its Thermal and Mechanical Properties

parameters on the properties of electro-spark deposited coatings. Arch. Metall. Mater., 63, 809-816. Razak, A., Majid, Z., Azmi, W., Azmi, W., Ruslan, M., Choobchian, Sh., Najafi, G., Sopian, K., 2016, Review on matrix thermal absorber designs for solar air collector . Renewable and Sustainable Energy Reviews, 64, 682-693. Scendo, M., Trela, J., Radek, N., 2014. Influence of laser power on the corrosive resistance of WC-Cu coating . Surf. Coat. Tech., 259, 401-407. Skrzypczak-Pietraszek, E., Piska, K., Pietraszek, J., 2018. Enhanced production of the

Open access
The Effect of Lean Tools on the Safety Level in Manufacturing Organisations

–268. Pietraszek, J., Skrzypczak-Pietraszek, E., 2014. The Optimization of the Technological Process with the Fuzzy Regression , in: Szczotok, A et al. (Eds.), Terotechnology, Advanced Materials Research. p. 151+. Pietraszek, J., Szczotok, A., Kolomycki, M., Radek, N., Kozien, E., 2017. Non-parametric assessment of the uncertainty in the analysis of the airfoil blade traces. Metal 2017: 26 th Int. Conf. on Metallurgy and Materials, 1412-1418. Pliszka, I., Radek, N., Gadek-Moszczak, A., Fabian, P., Paraska, O., 2018. Surface improvement by WC-Cu electro-spark

Open access
Optimal Features of Porosity of Ti Alloys Considering their Bioactivity and Mechanical Properties

-filled pores. J. Mater. Res., 16 (2001) 1508-1539. Li J. P., Li S. H., Van Blitterswijk C. A., De Groot K.: A novel porous Ti 6 Al 4 V: characterization and cell attachment. J. Biomed. Mater. Res., 73A (2005), 223-233. Miyao R., Omori M., Watari F., Yokoyama A., Matsumo H., Hirai T., Kawasaki T.: Fabrication of functionally graded implants by spark plasma sintering and their properties. J. Japan Soc. Powder Metall., 47 (2000), 1239-1242. Groza J. R., Zavaliangos A.: Sintering activation by external

Open access
Luminescence Properties and Decay Kinetics of Mn2+ and Eu3+ Co-Dopant Ions In MgGa2O4 Ceramics

. (2017). Structure and optical-lumenescent characteristics of Mg 1-x Zn x Ga 2 O 4 : Mn 2+ ceramics. Journal of Nano- and Electronic Physics, 9(1) , 01003. 27. Valiev, D., Khasanov, O., Dvilis, E., Stepanov, S., Polisadova, E., & Paygin, V. (2018). Luminescent properties of MgAl 2 O 4 ceramics doped with rare earth ions fabricated by spark plasma sintering technique. Ceramics International , 44 (17), 20768–20773. 28. Tsai, B. S., Chang, Y. H., & Chen, Y. C. (2006). Preparation and luminescent characteristics of Eu 3+ -activated Mg x Zn 1−x Ga 2 O 4

Open access