Search Results

11 - 20 of 116 items :

  • Cartesian product x
  • Numerical and Computational Mathematics x
Clear All
Operations of Points on Elliptic Curve in Projective Coordinates

spaces. Formalized Mathematics , 1( 2 ):335-342, 1990. Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics , 1( 5 ):887-890, 1990. Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics , 1( 5 ):829-832, 1990. Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics , 9( 3 ):559-564, 2001. Andrzej Trybulec. Domains and their Cartesian products

Open access
Equivalence of Deterministic and Nondeterministic Epsilon Automata

(1):165-167, 1990. [10] Karol Pąk. The Catalan numbers. Part II. Formalized Mathematics , 14(4):153-159, 2006, doi:10.2478/v10037-006-0019-7. [11] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics , 1(1):115-122, 1990. [12] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics , 1(1):97-105, 1990. [13] Michał Trybulec. Formal languages - concatenation and closure. Formalized Mathematics , 15(1):11-15, 2007, doi:10

Open access
Labelled State Transition Systems

(1):165-167, 1990. [10] Karol Pąk. The Catalan numbers. Part II. Formalized Mathematics , 14(4):153-159, 2006, doi:10.2478/v10037-006-0019-7. [11] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics , 1(1):115-122, 1990. [12] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics , 1(1):97-105, 1990. [13] Michał Trybulec. Formal languages - concatenation and closure. Formalized Mathematics , 15(1):11-15, 2007, doi:10

Open access
Extended Euclidean Algorithm and CRT Algorithm

-Wesley Professional, 1997. [10] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics , 1( 5 ):829-832, 1990. [11] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics , 1( 1 ):97-105, 1990. [12] Michał J. Trybulec. Integers. Formalized Mathematics , 1( 3 ):501-505, 1990. [13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics , 1( 1 ):67-71, 1990.

Open access
Affine Independence in Vector Spaces

-40, 1990. [9] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics , 1( 2 ):269-272, 1990. [10] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics , 1( 1 ):115-122, 1990. [11] Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics , 1( 5 ):847-850, 1990. [12] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics , 1( 3 ):581-588, 1990

Open access
First Order Languages: Further Syntax and Semantics

integers and integer relative primes. Formalized Mathematics , 1( 5 ):829-832, 1990. Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics , 1( 2 ):329-334, 1990. Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics , 1( 1 ):115-122, 1990. Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics , 1( 1 ):97-105, 1990. Zinaida Trybulec. Properties of subsets. Formalized Mathematics , 1

Open access
Relational Formal Characterization of Rough Sets

.1007/978-3-642-13529-3 33. [8] Artur Korniłowicz. Cartesian products of relations and relational structures. Formalized Mathematics , 6( 1 ):145-152, 1997. [9] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics , 1( 1 ):223-230, 1990. [10] Z. Pawlak. Rough sets. International Journal of Parallel Programming , 11:341-356, 1982. doi:10.1007/BF01001956. [11] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics

Open access
Preliminaries to Classical First Order Model Theory

):329-334, 1990. Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics , 1( 1 ):115-122, 1990. Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics , 1( 1 ):97-105, 1990. Michał J. Trybulec. Integers. Formalized Mathematics , 1( 3 ):501-505, 1990. Zinaida Trybulec. Properties of subsets. Formalized Mathematics , 1( 1 ):67-71, 1990. Edmund Woronowicz. Many-argument relations

Open access
The Properties of Sets of Temporal Logic Subformulas

] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics , 1( 2 ):329-334, 1990. [20] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics , 1( 1 ):115-122, 1990. [21] Andrzej Trybulec. Enumerated sets. Formalized Mathematics , 1( 1 ):25-34, 1990. [22] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics , 1( 1 ):97-105, 1990. [23] Andrzej Trybulec. Defining by structural induction in the positive propositional language

Open access
A Model of Mizar Concepts - Unification

References [1] Grzegorz Bancerek. König's theorem. Formalized Mathematics , 1( 3 ):589-593, 1990. [2] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics , 2( 4 ):547-552, 1991. [3] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics , 4( 1 ):77-82, 1993. [4] Grzegorz Bancerek. Subtrees. Formalized Mathematics , 5( 2 ):185-190, 1996. [5] Grzegorz Bancerek. Institution of many sorted

Open access