Search Results

11 - 20 of 7,701 items :

Clear All
Natural Convection in a Hydrodynamically and Thermally Anisotropic Non-Rectangular Porous Cavity: Effect of Internal Heat Generation/Absorption

. (1996): Natural convection in a vertical slot filled with an anisotropic porous medium with oblique principal axes . – Numer. Heat Transfer-Part A, vol.30, pp.397-412. [8] Mamou M., Mahidjida A., Vasseur P. and Robillard L. (1998): Onset of convection in an anisotropic porous medium heated from below by a constant heat flux . – Int. Comm. Heat Mass Transfer, vol.25, pp.799-808. [9] Storesletten L. and Tveitereid M. (1999): Onset of convection in an inclined porous layer with anisotropic permeability . – Appl. Mech. Engng., vol.4, pp.575-587. [10

Open access
Shorter but More Frequent Rest Periods: No Effect on Velocity and Power Compared to Traditional Sets not Performed to Failure

. Results Mean ± SDs for MV, MP, and RPE are presented in Figures 2 and 3 . There were no differences between RR6 and TS in MV ( Figure 2A; p > 0.05; d = 0.10 (-0.35, 0.56)), MP ( Figure 2B; p > 0.05; d = 0.19 (-0.27, 0.64)), MVD ( Figure 4 ; p > 0.05; d = 0.16 (-0.30, 0.62)), MPD ( p > 0.05; d = 0.22 (-0.24, 0.68)), MVM ( Figure 5 ; p > 0.05; d = 0.12 (0.34, 0.56)), or MPM ( p > 0.05; d = 0.09 (-0.36, 0.55)). Figure 2 Means and standard deviations during rest redistribution sets (RR6) and traditional sets (TS) across 30 repetitions for: A) mean

Open access
The Effect of Peroral Administration of Lactobacillus Fermentum Culture on Dairy Cows Health Indices

REFERENCES 1. Gantner, V., Kuterovac, K., Potočnik, K. (2016). Effect of heat stress on metabolic disorders prevalence risk and milk production in Holstein cows in Croatia. Ann. Anim. Sci., 16 (2): 451–461. 2. Fleming, S.A. (2015). Bovine metabolic disorders. In: Smith B.P. (Eds.), Large animal internal medicine (pp. 1252-1258). St. Louis, Missouri: Mosby, Elsevier Inc. 3. Wang, D.S., Zhang, R.Y., Zhu, W.Y., Mao, S.Y. (2013). Effects of subacute ruminal acidosis challenges on fermentation and biogenic

Open access
Double-Diffusive Convection of Synovial (Couple-Stress) Fluid in the Presence of Hall Current Through a Porous Medium

. Fluids, vol.9, pp.1709-1715. [5] Stokes V.K. (1984): Theories of Fluids with Miscrostructure. – New York: Springer-Verlag. [6] Walicki E. and Walicka A. (1999): Inertia effect in the squeeze film of a couple-stress fluid in biological bearings. – Appl. Mech. Engng., vol.2, pp.363-373. [7] Sunil, Sharma Y.D., Bhart P.K. and Sharma R.C. (2005): Thermosolutal instability of compressible Rivlin-Ericksen fluid with Hall currents. – International J. of Applied Mechanics and Engineering, vol.10, No.2, pp.329-343. [8] Malashety M.S. and Kollur P

Open access
Exact controllability of fractional neutral integro-differential systems with state-dependent delay in Banach spaces

-24. [9] B. Ahmad, S. K. Ntouyas and A. Alsaed, Existence of solutions for fractional q-integro-difference inclusions with fractional q-integral boundary conditions, Advances in Difference Equations, 2014:257, 1{18. [10] R. P. Agarwal, B. D. Andrade, On fractional integro-differential equations with state-dependent delay, Comp. Math. App., 62(2011), 1143{1149. [11] M. Benchohra, F. Berhoun, Impulsive fractional differential equations with state-dependent delay, Commun. Appl. Anal., 14(2)(2010), 213{224. [12] K. Aissani and

Open access
Notes on Knaster-Tarski Theorem versus Monotone Nonexpansive Mappings
Dedicated to Ibn al-Banna’ al-Marrakushi (c. 1256 c. 1321)

nonexpansive mappings , Bulletin of the Polish Academy of Sciences Mathematics (2017) DOI: 10.4064/ba8120-1-2018 [18] K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings , Proc. Amer. Math. Soc. 35 (1972), 171-174. [19] K. Goebel, W.A. Kirk, Iteration processes for nonexpansive mappings, Contemp. Math., 21 (1983), pp. 115-123. [20] D. Göhde, Zum Prinzip der kontraktiven Abbildung, Math. Nachr. 30 (1965), 251-258. [21] S. Heikkilä and V. Lakshmikantham, Monotone Iterative Techniques for Discontinuous

Open access
Les Huit Premiers Travaux de Pierre Liardet

. [7] _____ : Sur une conjecture de Serge Lang , C. R. Acad. Sci. Paris Sér. A 279 (1974), 435–437. [8] _____ : Sur une conjecture de Serge Lang , in Journées Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, Bordeaux, 1974), Soc. Math. France, Paris, 1975, 187–210. Astérisque, Nos. 24–25. [9] _____ : Transformations Rationnelles et Ensembles Algébriques , Thèse 3e cycle, Université de Provence, Faculté des Sciences 1970. [10] _____ : Première thèse: Sur la Stabilité Rationnelle ou Algébrique d’ensembles de Nombres Algébriques , Deuxième thèse

Open access
Effect of a bacteriophage cocktail in combination with modified atmosphere packaging in controlling Listeria monocytogenes on fresh-cut spinach

ListShield™ bacteriophage cocktail and stored under MAP with ambient atmosphere (AA) or modified atmosphere (MA); a) storage at 4°C; b) storage at 10°C. The experiments were performed three times in duplicates. NP: no phage (control); P: phage treatment. Application of the ListShield™ phage cocktail to fresh-cut spinach leaves stored at 10°C for 1 d significantly (P < 0.05) lowered the populations of Lm- Nal R by 1.50 log CFU/cm 2 when compared to control-treated inoculated leaf pieces stored under AA ( Figure 3b ). When packaged under MA, the phage mixture

Open access
The inflammatory and hemostatic cardiovascular risk markers during acute hyperglycemic crisis in type 1 and type 2 diabetes

, etc) and other markers. On the other hand, acute hyperglycemia is associated with inflammation and accelerates the inflammatory immune response ( 2 ). Simultaneously, it has been shown that hyperglycemia can induce proinflammatory cytokines genes in T cells and acute phase reactants, CRP and IL-6 ( 3 , 4 ). In addition, T2D and obesity are linked with increased levels of CRP and IL-6 ( 2 , 5 , 6 , 7 , 8 , 9 ). Furthermore, elevated plasma homocysteine levels were associated with cardiovascular complications in diabetes ( 10 , 11 , 12 ). However, opposite findings

Open access
Simulation Model of Contamination Threat Assessment in Water Network Using the Epanet Software

;36:105-115. [6] Liua J, Chenb H, Yaob L, Weib Z, Loub L, Shanc Y, et al. J Hazard Mater. 2016;317:27-35. DOI: 10.1016/j.jhazmat.2016.05.048. [7] Valis D, Zak L, Pokora O. P I Mech Eng O-J Ris. 2015;229:36-45. DOI: 10.1177/ 1748006X14547789. [8] Diadovski I, Atanassova M, Simeonov V. Ecol Chem Eng S. 2011;18:319-332. [9] Vaabel J, Koppel T, Sarv L, Annus I. Procedia Eng. 2014;89:679-684. DOI: 10

Open access