Search Results

11 - 20 of 240 items :

  • Materials Sciences, other x
Clear All
Experimental Verification of Numerical Calculations with the Use of Digital Image Correlation

BIBLIOGRAPHY [1] Osmęda, A., 2012, „Strength and construction analysis of aerospace test structure - Internal report (Analiza wytrzymałościowo-konstrukcyjna demonstratora, Raport wewnętrzny),” 05/BU/2012/TEBUK, Institute of Aviation, Warsaw. [2] Osmęda, A., 2016, “Result comparison of numerical analysis and structural tests of aerospace test structure (Porównanie wyników analiz numerycznych i prób wytrzymałościowych demonstratora struktury lotniczej),” Transactions of the Institute of Aviation, Warsaw, No. 244(3). pp. 123-134. [3] Bajurko, P

Open access
Impact of incorporation of chromium on electrochemical properties of LiFePO4/C for Li-ion batteries

] Y un N.J., H a H.W., J eong K.H., P ark H.Y., K im K., J. Power Sources , 160 (2006), 1361. [7] G abrisch H., W ilcox J.D., D oeff M.M., Electrochem. Solid. St. Lett. , 9 (7) (2006), A360. [8] C hung S.Y., B loking J.T., C hiang Y.M., Nat. Mater. , 1 (2002), 123. [9] Y amada A., C hung S.C., H inikuma K., J. Electrochem. Soc. , 148 (2001), A224. [10] G ibot P., C abanas M.C., L affont L., L evasseur S., C arlach P., H amelet S., T arascon J.M., M asquelier C., Nat. Mater. , 7 (2008), 741. [11] Z avalij P

Open access
Microwave dielectric properties of BiFeO3 multiferoic films deposited on conductive layers

., Ora S. W., Liu J. M., Liu Z.G., Appl. Phys. Lett., 89 (2006), 052905. [5] Yu B., Li M., Liu J., Guo D., Pei L., Zhao X., J. Appl. Phys., 41 (2008), 06503. [6] Takahashi K., Kida N., Tonouchi M., Phys. Rev. Lett., 96 (2006), 117402. [7] Chen J.-C., Wu J.-M., Appl. Phys. Lett., 91 (2007), 182903. [8] Zhang X-Y., Song Q., Xu F., Ong C.K., Appl

Open access
Synthesis of LiNiO2 by two-step solid-state method

References [1] ZHONG S.W., ZHAO Y.J., LIAN F., LI Y., HU Y., LI P.Z., MEI J., LIU Q.G., Trans. Nonferrous Met. Soc. China, 16 (2006), 137. [2] KIM C., AHN I., CHO K., J. Alloy. Compd., 449 (2008), 335. [3] HU G.R., DENG X.R., PENG Z.D., Rare Metal. Mater. Eng., 37 (2008), 1881. [4] SATHIYAMOORTHI R., SHAKKTHIVEL P., RAMALAKSHMI S., J. Power Sources, 171 (2007), 922. [5] CAO J.F., GUO C., ZOU H.M., J. Solid State Chem., 182 (2009), 555. [6] SONG M.Y., KWON I., SHIM

Open access
Preparation and characterization of (Co0:3Zn0:7)(Ti1–xSnx)Nb2O8 microwave dielectric ceramics

References [1] MEI Q.J., LI C.Y., GUO J.D., WU H.T., J. Alloy. Compd, 626 (2015), 217. [2] FREER R., AZOUGH F., J. Eur. Ceram. Soc., 28 (2008), 1433. [3] TANG B., FANG Z., LI H., LIU L., ZHANG S., J. Mater. Sci.-Mater. El., 26 (2014), 300. [4] KIM D.-W., KIM D.-Y., HONG K.S., J. Mater. Res, 15 (2000), 1331. [5] LIAO Q., LI L., DING X., Solid State Sci., 14 (2012), 1385. [6] PARK H.S., YOON K.H., KIM E.S., Mater. Chem. Phys, 79 (2003), 181. [7] KIM E

Open access
Annealing and Ni content effects on EPR and structural properties of Zn1–xNixO aerogel nanoparticles

. Chem. Soc., 127 (2005), 5292. [6] SONG C., PAN S.N., LIU X.J., LI X. W., ZENG F., YAN W. S., HE B., PAN F., J. Phys.-Condens. Mat., 19 (2007), 176229. [7] PAN F., SONG C., LIU X., YANG Y., ZENG F., Mat. Sci. Eng. R, 62 (2008), 1. [8] ANDO K., SAITO H., JIN Z., FUKUMURA T., KAWASAKI M., MATSUMOTO Y., KOINUMA H., Appl. Phys. Lett., 78 (2001), 2700. [9] NORTON D.P., PEARTON S.J., HEBARD A.F., THEORDOROPOULOU N., BOATNER L.A., WILSON R. G., Appl. Phys. Lett., 82 (2003), 239. [10] JIN Z

Open access
Substitutional effect of copper on the cation distribution in cobalt chromium ferrites and their structural and magnetic properties

. Surf. Sci., 263 (2012), 100. [8] Tailhades P., Villette C., Rousset A., Kulkarni G., Kannan K., Rao C., Lenglet M., J. Solid State Chem., 141 (1998), 56. [9] Mathew T., Shiju N., Sreekumar K., Rao B.S., Gopinath C.S., J.Catal., 210 (2002), 405. [10] Abraham T., J. Ceram. Soc. Bull., 62 (1994), 73. [11] Cullity B.D., Elements Of X-Ray Diffraction, Addison Wesley, India, 1956. [12] Pecchal R.M., Madhuri W., Ramananhar R.N., Siva Kumar K.V., Murthy V.R., Ramakrishna R., J. Sci. Eng., 30

Open access
A general formula for the transmission coefficient through a barrier and application to I–V characteristic

[1] G.J. PAPADOPOULOS, J. Non-Crystalline Solids 53 (2009) 1376. [2] R. TSU, L. ESAKI, Appl. Phys. Lett. 22 (1973) 562. [3] D.K. FERRY, S.M. GOODNICK, Transport in Nanostructures, Cambridge: Cambridge University Press (1997). [4] P. SU, Z. CAO, K. CHEN, C. YIN, Q. SHEN, J. Phys. A: Math. Theor. 41 (2008) 465301.

Open access
Structural and conductivity studies of LiNi0.5Mn0.5O2 cathode materials for lithium-ion batteries

, AC conductivity exhibits dispersion and increases with an increase in frequency and temperature [43] . The maximum AC conductivity of the synthesized sample is 1.03 × 10 −6 S/cm at 60 °C. Fig. 6 Variation of AC conductivity of LiNi 0.5 Mn 0.5 O 2 material as a function of frequency at different temperatures. The activation energies for AC conductivity at different temperature regions were obtained by measuring the slope of the curves and using the Arrhenius relationship: σ ac = σ 0 exp ( − E a k B T ) $${\sigma _{{\text{ac}}}} = {\sigma _0}\exp

Open access
Synthesizing cysteine-coated magnetite nanoparticles as MRI contrast agent: Effect of pH and cysteine addition on particles size distribution

., Venkatraman S., Ramanujan R. V., Mater. Sci. Eng. C, 27 (2007), 347. [6] Yongai Z., Fengqi L., Qing Z. Ge G., Coll. Surf. A: Physicochem. Eng. Asp., 332 (2009), 98. [7] Ahmadi R., Madaah Hosseni H. R., Masoudi A., J. Min. Metall. Sect. B-Metall., 47 (2011), 211. [8] Xu J. et al., Magn. Magn. Mater., 309 (2007), 307.

Open access