Search Results

131 - 140 of 150 items :

  • "efficiency" x
  • Process Engineering x
Clear All

efficiency of polyaniline modified TiO 2 nanoparticles. Appl. Catal. B 136–137, 133–139. DOI: 0.1016/j.apcatb.2013.01.007. 18. Wei, J., Zhang, Q., Liu, Y., Xiong, R., Pan, C. & Shi, J. (2011). Synthesis and photocatalytic activity of polyaniline–TiO 2 composites with bionic nanopapilla structure. J. Nanopart. Res. 13, 3157–3165. DOI: 10.1007/s11051-010-0212-z. 19. Gao, J., Li, S., Yang, W., Ni, G. & Bo, L.J. (2007). Synthesis of PANI/TiO 2 –Fe 3+ nanocomposite and its photocatalytic property. Mater. Sci. 42, 3190–3196. DOI: 0.1007/s10853-006-1353-4. 20. Yavuz, A

–57. DOI: . 31. Karthikeyan Krishnamoorthy, Murugan Veerapandian, Ling-He Zhang, Kyusik Yun, and Sang Jae Kim. (2012). Antibacterial Efficiency of Graphene Nanosheets against Pathogenic Bacteria Via Lipid Peroxidation. J. Phys. Chem. C. 116, 17280–87. DOI: 10.1021/jp3047054. 32. Yongbin Zhang, Syed F. Ali, Enkeleda Dervishi, Yang Xu, Zhongrui Li, Daniel Casciano, and Alexandru S. Biris. (2010). Cytotoxicity Effects of Graphene and Single-Wall Carbon Nanotubes in Neural Phaeochromocytoma-Derived Pc12 Cells. ACS Nano. 4, 3181

production conditions as detergent additive . Unpublished dissertation. Ankara University, Ankara, Turkey. 27. Pérez, D., Martín, S., Fernández-Lorente, G., Filice, M., Guisán, J.M., Ventosa, A. & Mellado, E. (2011). A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA). PLoS One 6(8):e23325. DOI: 10.1371/journal.pone.0023325. 28. Bhatnagar, T., Boutaiba, S., Hacene, H., Cayol, J.L., Fardeau, M.L., Ollivier, B. & Baratti, J.C. (2005). Lipolytic activity from Halobacteria: Screening and hydrolase production. FEMS

. Technol. 50, 291-299. DOI: 10.1016/j.seppur.2005.11.034. 9. Gomes, S., Cavaco, S.A., Quina, M.J. & Gando-Ferreira, L.M. (2010). Nanofiltration process for separating Cr(III) from acid solutions: Experimental and modelling analysis. Desalination 254, 80-89. DOI: 10.1016/j.desal.2009.12.010. 10. Nędzarek, A., Drost, A., Tórz, A., Harasimiuk, F. & Kwaśniewski, D. (2015). The impact of pH and sodium chloride concentration on the efficiency of the process of separating high-molecular compounds. J. Food Proc. Engine. 38, 115-124. DOI: 10.1111/jfpe.12131. 11. Drost, A

. Kazemimoghadam, M. & Mohammadi, T. (2007). Chemical cleaning of ultrafiltration membranes in the milk industry, Desalination , 204, 213-218. DOI: 10.1016/j.desal.2006.04.030. 24. Blanpain-Avet, P., Migdal, J.F. & Bénézech, T. (2004). The effect of multiple fouling and cleaning cycles on a tubular ceramic microfiltration membrane fouled with a whey protein concentrate. Membrane performance and cleaning efficiency, Food Bioproducts Process , 82 (C3), 231-243. DOI: 10.1205/ fbio. 25. Cabero, M.L., Riera, F.A. & Alvarez, R. (1999). Rinsing of ultrafiltration

:// 6. Simonic, M. (2009). Efficiency of ultrafiltration for the pre-treatment of dye-bath effluents. Desalination. 246, 328–334. DOI: 10.1016/j.desal.2009.02.040. 7. Chatzisymeon, E., Xekoukoulotakis, N.P., Coz, A., Kalogerakis, N. & Mantzavinos, D. (2006). Electrochemical treatment of textile dyes and dyehouse effluents Efthalia Chatzisymeon. J. Hazard. Mat er 137(2), 998–1007. 8. Ansari, R. & Mosayebzadeh, Z. (2010). Removal of Basic Dye Methylene Blue from Aqueous Solutions Using Sawdust and Sawdust Coated

LITERATURE CITED 1. Derbalah, A., Ismail, A. & Shaheen, S. (2013) Monitoring of organophosphorus pesticides and remediation technologies of the frequently detected compound (chlorpyrifos) in drinking water. Pol. J. Chem. Technol. 15(3) 25–34. DOI: 10.2478/pjct-2013-0040. 2. Ullah, A., Khattak, M.N.K., Richter, P. & Hader, D.P. (2011). Water pollution in Pakistan and its impact on public health- A review. Environ. Inter. J. 37(2), 479–497. DOI: 10.1016/j.envint.2010.10.007. 3. Saleem, M., Bukhari, A.A. & Al-Malack, M.H. (2000). Removal efficiencies of

-based fermentation and broth downstream by nanofiltration. Pol. J. Chem. Tech. 16(4), 117–122. DOI: 10.2478/pjct-2014-0081. 22. Grzechulska-Damszel, J. & Morawski, A. (2007). Removal of organic dye in the hybrid photocatalysis/membrane processes system. Pol. J. Chem. Tech . 9(2), 94–98. DOI: 10.2478/v10026-007-0036-5. 23. Lobos-Moysa, E., Dudziak, M. & Zon, Z. (2009). Biodegradation of rapeseed oil by activated sludge method in the hybrid system. Desalination 241(1–3), 43–48. DOI: 10.1016/j.desal.00.0.028229. 24. Trusek-Holownia, A. (2011). Efficiency of alcohols

. Sci. 53(12), 8909-8920. DOI: 10.1007/s10853-018-2206-7. 39. Chandola, M. & Marathe, S. (2008). A QSPR for the plasticization efficiency of polyvinylchloride plasticizers. J. Molec. Graphics and Modelling. 26(5), 824-828. DOI: 10.1016/j.jmgm.2007.04.008. 40. Haryono, A., Triwulandari, E. & Jiang, P. (2017). Interaction between vegetable oil based plasticizer molecules and polyvinyl chloride, and their plasticization effect. AIP Conference Proceedings. 1803(1), 020045. DOI: 10.1063/1.4973172. 41. Yang, Y., Huang, J., Zhang, R. & Zhu, J. (2017). Designing bio

–473. DOI: 10.1016/j. ijfoodmicro.2011.12.017. 11. Brocca, D.. Arvin, E. & K, H. (2002). Identification of organic compounds migrating from polyethylene pipelines into drinking water. Water Research. 36(15), 0-3680. DOI: 10.1016/s0043-1354(02)00084-2. 12. Kirschweng, Balázs., Tátraaljai, Dóra, F.E. & Pukánszky, Béla. (2015). Efficiency of curcumin, a natural antioxidant, in the processing stabilization of PE: concentration effects. Pol. Degrad. Stab. 118, 17–23. DOI: 10.1016/j.polymdegradstab.2015.04.006. 13. Aymes-Chodur, C., Betz, N., Legendre, B. & Yagoubi, N