Search Results

You are looking at 101 - 110 of 300 items for :

Clear All
Open access

Joshua A. Obaleye and Olufunso O. Abosede

Abstract

Three manganese complexes of the antibiotic doxycyline viz.: manganese doxycyline, [MnDox2]Cl2‧2H2O (1), and manganese doxycyline with bipyridine, [MnDox2(bpy)]Cl2‧8H2O (2), and phenanthroline, [MnDox2(phen)]Cl2‧8H2O (3), as the ancillary ligand were synthesized and characterized by FT-IR, elemental analysis and electrospray mass spectroscopy. The three complexes show good solubility in DMF and DMSO. Data obtained from spectroscopic techniques used show that doxycycline coordinates to the central manganese atom through the oxygen of the amide group and the carbonyl oxygen atom of ring A while bipyridine/phenanthroline coordinates through the two diimine nitrogen atoms. The stoichiometry of manganese-doxycycline is 1:2 and octahedral geometry is the preferred coordination in all the complexes.

Open access

Ikpa Chinyere Benardette Chinaka, Onoja Samuel Okwudili and Dozie-Akaniro Ijeoma Nkiru

Abstract

The study investigated the bioactive constituents, antioxidant and antibacterial activities of Platycerium bifucartum leaves. Chloroform fraction of P. bifurcatum was prepared by partitioning the ethanol extract with chloroform and water. The phytochemical analysis was carried out using standard methods. Fourier transformer-infrared (FT-IR) and Gas chromatography-mass spectroscopy (GC/MS) were used in the characterization of the bioactive compounds. The antioxidant and antibacterial activities of the chloroform fraction were evaluated using standard protocols. The fourier transformer-infrared analysis showed the presence of C=O, OH, CHO, C-F and -NH functional groups. GC/MS characterization gave benzeneethaneamine (33.3%), 2-amino-1-(4-methylphenyl) propane (17.04%), hydroxyurea (30.26%) and epinephrine (13.26). The extract inhibited the growth of the bacterial isolates. The fraction exhibited antioxidant properties that were comparable with ascorbic acid. The presence of these compounds showed that the leaves of Platycerium bifurcatum can be used for the treatment of some bacterial diseases.

Open access

Mohamed Afqir, Amina Tachafine and Didier Fasquelle

Abstract

The main subject of the presented research is to investigate the dielectric properties of BaBi1.8Ln0.2Nb2O9 (Ln = Ce, Gd) ceramics prepared by conventional solid state reaction route. The materials were examined using XRD and FT-IR methods. Moreover, the AC conductivity, dielectric constant and dielectric loss of the ceramics were determined. X-ray diffraction confirmed that all these compounds crystallize in an orthorhombic structure. Fourier transform infrared spectroscopy study confirmed the presence of two characteristic vibration bands located at around 617 cm-1 and 818 cm-1 for BaBi2Nb2O9. The experimental results show that the substitution of Bi by Ce or Gd causes a decrease in Curie temperature, dielectric constant and dielectric loss.

Open access

Nitin R. Dighore, Priyanka L. Anandgaonker, Suresh T. Gaikwad and Anjali S. Rajbhoj

Abstract

Crystalline MoO3 nanoparticles were obtained by electrochemical synthesis process using tetrapropylammonium bromide as a stabilizer and structure-directing agent in ACN:THF(4:1) solvent. Formation of MoO3 nanoparticles took place at a constant supply current of 14 mA/cm2. These synthesized MoO3 nanoparticles were characterized by UV-Vis spectroscopy, FT-IR spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy (SEM). So prepared MoO3 nanoparticles were used as a heterogeneous catalyst for the synthesis of 2,6-bis(benzylidene)cyclohexanone derivatives. This protocol offers several advantages, such as simple work-up procedure, recyclability of the catalyst, excellent product yield in a short reaction time and purification of products with a non-chromatographic method.

Open access

Hossein Faghihian and Sepideh Nazari Farsani

Polyacrylamide-zeolite composite was prepared by direct polymerization of polyacrylamide in suspensions of β-zeolite. Phytic acid was then immobilized on the composite surface. Fourier transform infrared spectrometry (FT-IR), X-Ray Diffraction (XRD) and Thermal gravimetry (TG) techniques were employed to characterize the synthesized adsorbent. The adsorptive features of the composite and the modified composite were investigated for the removal of Pb2+ from aqueous solution in view of dependency on pH, time, ion concentration, temperature, selectivity, kinetics and reusability. The adsorption isotherms were evaluated with reference to the Langmuir and Freundlich models. Thermodynamic of the system was calculated. ΔG<0 indicated that the adsorption process was spontaneous. Good compatibility of the adsorption kinetics to the pseudo-second-order model predicted that the rate-controlling step was a chemical sorption. The selectivity experiments showed that the adsorbents were selective toward Pb2+ in the presence of Zn2+ and Cd2+. The reusability of the adsorbent was tested for four regeneration cycles.

Open access

Neeraj K. Mishra, Chaitnaya Kumar, Amit Kumar, Manish Kumar, Pratibha Chaudhary and Rajeev Singh

Abstract

A nanocomposite of 0.5SnO2–0.5Al2O3 has been synthesized using a sol-gel route. Structural and optical properties of the nanocomposite have been discussed in detail. Powder X-ray diffraction and scanning electron microscopy with energy-dispersive X-ray diffraction spectroscopy confirm the phase purity and the particle size of the 0.5SnO2–0.5Al2O3 nanocomposite (13 to 15 nm). The scanning electron microscopy also confirms the porosity in the sample, useful in sensing applications. The FT-IR analysis confirms the presence of physical interaction between SnO2 and Al2O3 due to the slight shifting and broadening of characteristic bands. The UV-Vis analysis confirms the semiconducting nature because of direct transition of electrons into the 0.5SnO2–0.5Al2O3 nanocomposites.

Open access

Aseel A. Kareem

Abstract

Polyimide/polyaniline nanofiber composites were prepared by in situ polymerization with various weight percentages of polyaniline (PANI) nanofibers. X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR), proved the successful preparation of PANI nanofiber composite films. In addition, thermal stability of PI/PANI nanofiber composites was superior relative to PI, having 10 % gravimetric loss in the range of 623 °C to 671 °C and glass transition temperature of 289 °C to 297 °C. Furthermore, the values of the loss tangent tanδ and AC conductivity σAC of the nanocomposite films were notably higher than those of pure polyimide. The addition of 5 wt.% to 15 wt.% PANI nanofiber filler enhanced the activation energy of PI composites from 0.37 eV to 0.34 eV.

Open access

S. I. El-Dek, M. A. Ahmed and Alaaeldin A. Eltawil

Abstract

Two series of Mn-Zn nanoferrites (namely Mn1-xZnxFe2O4 and Mn1-xZnxFe2-yRyO4) were synthesized using standard ceramic technique. X-ray diffraction and FT-IR were employed in the chacterization of the nanopowder. The X-ray density for each sample increased after laser irradiation which was correlated with the decrease in the unit cell volume. The study involved the thermal and frequency variation of the dielectric constant and AC conductivity of the investigated samples before and after laser irradiation. The later altered the conductivity by decreasing its value for the rare earth doped samples except for the Sm3+ doped one. The results suggested the exploitation of Mn-Zn doped rare earth nanoferrites in many technological applications demanding high resistivity.

Open access

Palusamy Suppuraj, Ganesamoorthy Thirunarayanan, Meenakshisundaram Swaminathan and Inbasekaran Muthuvel

Abstract

Spinel ZnFe2O4 was developed successfully as a heterogeneous-Fenton catalyst for the degradation of Reactive Yellow 86 (RY 86) under UV light. The ZnFe2O4 was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM) and UV-diffuse reflectance spectroscopy (UV-DRS). FE-SEM reveals that the some of the particles sizes are in the range from 10 nm to 50 nm. The photocatalytic performance of ZnFe2O4 was evaluated by degradation of RY 86 dye solution under UV light. The degradation rate was highly influenced by pH, initial concentrations of H2O2 and catalyst concentration. The results indicated that ZnFe2O4 could be used as a photocatalyst for treatment of industrial coloured wastewater. The catalyst was reused for five consecutive runs without significant change in its activity. Moreover, the antibacterial effects were investigated.

Open access

Reza Ahmadi and Hamid Hosseini

Abstract

In this study, some stabilized magnetite based ferrofluids were synthesized using Dextran as a stabilizing agent. In order to achieve optimum experimental conditions for synthesizing ferrofluids as MRI contrast agents, the Taguchi method was used. This approach was employed to design and minimize the number of required experiments. By using the Taguchi orthogonal (L16) array, four parameters including solution temperature and alkalinity, reaction temperature and stirring rate were selected at four predetermined levels for 16 experiments. Synthesizing processes established based on this set of experimental conditions were carried out and the obtained ferrofluids were characterized using PCS, VSM, TEM and FT-IR techniques. The obtained results were used and analyzed through the Qualitek-4 software and the proposed optimum experimental conditions were used for synthesizing the desired sample. Finally, this sample was used as a potential MRI contrast agent for imaging lymph nodes.