Search Results

91 - 100 of 107 items :

  • "Structural steels" x
Clear All

://doi.org/10.1016/j.engstruct.2016.03.022 . 13. M. I. Moharram, D. V. Bompa, A. Y. Elghazouli, “Experimental and Numerical Assessment of Mixed RC Beam and Steel Column Systems”, Journal of Constructional Steel Research 131: 51–67, 2017. DOI: https://doi.org/10.1016/j.jcsr.2016.12.019 . 14. M. Moharram, D. Bompa, and A. Elghazouli, “Inelastic Assessment of Hybrid RC Beams to Steel Column Configurations Using Structural Steel Shear-Keys”, In: Hordijk D., Luković M. (eds), High Tech Concrete: Where Technology and Engineering Meet (Proceedings of the 2017 fib Symposium, held in

, K. Wilde, J. Chróścielewski, Wave propagation analysis in spatial frames using spectral timoshenko beam elements in the context of damage detection, Archives of Civil Engineering, 55, 3, 367-402, 2009. 17. A.G. Franklin, Comparison between a quantitative microscope and chemical method for assessment on non-metallic inclusions, Journal of the Iron and Steel Institute, 207, 181-186, 1969. 18. PN-EN 10025-1:2005 Hot Rolled Products of Structural Steels -- Part1: General Technical Delivery Conditions. 19. P.G. Kossakowski, Simulation of ductile fracture of S235JR

-384, 2010 [in Polish] 20. EN 1993-1-1, Eurocode 3: Design of steel structures. Part 1-1: General rules and rules for buildings,, Brussels: CEN, 2005. 21. A.M. Barszcz, M.A. Gizejowski, “An Equivalent Stiffness Approach for Modeling the Behavior of Compression Members According to Eurocode 3”, Journal of Constructional Steel Research, 63 (1), 55-70, 2007. 22. M. Kucukler, L. Gardner, L. Macorini, “A stiffness reduction method for the design of structural steel elements”, Engineering Structures 73, 72-84, 2014 23. M. Kucukler, L. Gardner, L. Macorini, “Development and

. Proceedings of the International Conference "Joining of Metals - 2", Helsingor, Denmark 1984. Ozaki H., Naiman J., Masubuchi K.: A study of hydrogen cracking in underwater steel welds. "Welding Journal" 8/1977. Bailey N.: Weldability of ferritic steels. Abington Publishing, Abington Hall, Cambridge, England 1994. Butnicki S.: Weldability and brittleness of steel. Wydawnictwa Naukowo-Techniczne, Warszawa 1991 (in Polish). IIW Doc. IX-1970-00 Pokhodnya I. K., Shvachko V. I.: Physical nature of hydrogen-induced cold cracks in welded joints in structural steels. Fydrych D

Structural Steel. Journal Of The Balkan Tribological Association (22)2, pp. 1147-1155. Vasantharaja, P., Vasudevan, M. and Maduraimuthu, V. (2018). Effect of Arc Welding Processes on the Weld Attributes of Type 316LN Stainless Steel Weld joint. Transactions of the Indian Institute of Metals, [online] 71(1), pp. 127-137. Available at: https://link.springer.com/article/10.1007/s12666-017-1162-2 [Accessed 29 Jun. 2017]. Zareie Rajani, H.R., Torkamani, H., Sharbati, M. and Raygan, Sh. (2012). Corrosion resistance improvement in Gas Tungsten Arc Welded 316L stainless steel

.; Sathakumar, A.; Seetharaman, S.; Satish Kumar, S.; Arul Jayachandran, S.; Senthil, R. Teaching Material on Structural Steel Design for Civil/ Structural Engineering; 2001. 10. Coffin, L. The Problem of Thermal Stress Fatigue in Austenitic Steels at Elevated Temperatures. Symposium on Effect of Cyclic Heating and Stressing on Metals at Elevated Temperatures. 1954. 11. Iida, K.; Bannai, T.; Higuchi, M.; Tsutsumi, K.; Iida, K.; Bannai, T.; Sakaguchi, K. Comparison of Japanese MITI Guideline and Other Methods for Evaluation of Environmental Fatigue Life Reduction. Pressure

: Springer-Verlag, 2013. 181 pp. ISBN 978-3-642-38299-4. [11] KÜHN, B., HELMERICH, R., NUSSBAUMER, A. et al. Assessment of existing steel structures: recommendations for estimation of remaining fatigue life. JRC, 2007. 89 pp. ISBN 1018-5593. [12] JUNG, K., MARKOVA, J., POKORNY, P. & SYKORA, M. Material Properties of Heritage Wrought Steel Structure Based on In-Situ Tests (accepted for publication). In Proc. STREMAH 2017. Ashurst Lodge : WIT Press, 2017. [13] HOLOWATY, J.M. & WICHTOWSKI, B. Properties of structural steel used in earlier railway bridges. Struct Eng Int

.33. [17] Melcher, J., Kala, Z., Holický, M., Fajkus, M. & Rozlívka, L. Design characteristics of structural steels based on statistical analysis of metallurgical products. Journal of Constructional Steel Research, 60, 3-5, 2004, pp.795-808. [18] Novák, D. Bergmeister, K. Pukl, R. Červenka, V. Structural assessment and reliability analysis for existing engineering structures, Theoretical background. Structure and infrastructure engineering , 2009, Vol. 9, No. 2, pp. 267-275. [19] NUREG/CR-6906, Containment Integrity Research at Sandia National Laboratories , An

Multiscale Modelling , 2015, Vol. 6, No. 2 (5 pages), Imperial College Press, DOI: 10.1142/S1756973715500067. [19] MELCHER, J. KALA, Z. HOLICKÝ, FAJKUS, M. & ROZLÍVKA, L. Design characteristics of structural steels based on statistical analysis of metallurgical products. Journal of Constructional Steel Research , 60, 3-5, 2004, pp.795-808, ISSN: 0143-974X. [20] NOVÁK, D. BERGMEISTER, K. PUKL, R. & ČERVENKA, V. Structural assessment and reliability analysis for existing engineering structures, Theoretical background. Structure and infrastructure engineering , 2009, Vol. 9

.). Nondestructive Characterization of Materials VIII ; Springer Science & Business Media: New York, NY, USA, 2012. [8] Bowman, K.J. Mechanical Behavior of Materials ; John Willey & Sons: Hoboken, NJ, USA, 2004. [9] Hibbeler, R.C. Statics and Mechanics of Materials , 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2013. [10] Arasaratnam, P.; Sivakumaran, K.S.; Tait, M.J. True stress-true strain models for structural steel elements. ISRN Civil Eng. 2011, 2011 , 1–11. [11] Dumoulin, S.; Tabourot, L.; Chappuis, C.; Vacher, P.; Arrieux, R. Determination of the equivalent