Suchergebnisse

Ergebnisse 1 - 3 von 3 :

Alle zurücksetzen
Application of Anaerobic Digestate as Inoculum for Treatment of the Plant-Derived Wastes: Case Study

.06.002 [10] J. De Vrieze, L. Raport, B. Willems, S. Verbrugge, E. Volcke, E. Meers, L. T. Angenent, and N. Boon, “Inoculum selection influences the biochemical methane potential of agro-industrial substrates,” Microbial Biotechnology , vol. 8, no. 5, pp. 776–786, Mar. 2015. https://doi.org/10.1111/1751-7915.12268 [11] S. Tandy, J. R. Healey, M. A. Nason, J. C. Williamson, D. L. Jones, and S. C. Thain, “FT-IR as an alternative method for measuring chemical properties during composting,” Bioresource Technology , vol. 101, no. 14, pp. 5431–5436, Jul. 2010. https

Open access
Synthesis, Characterization and Synthetic Applications of Fly-ash:H3PO4 Nanocatalyst

Abstract

The solid acidic nanocatalyst fly-ash:H3PO4 was prepared and characterized by FT-IR, SEM, EDS and TEM analysis. This catalyst was utilized for aldol condensation, coupling and cyclization reaction. The effect of catalytic activity of this fly-ash:H3PO4 nanocatalyst was studied with the obtained yield of products under solvent-free conditions. In this synthetic reaction the obtained yields were more than 95 %.

Open access
Facile Synthesis of Spinel Nanocrystalline ZnFe2O4: Enhanced Photocatalytic and Microbial Applications

Abstract

Spinel ZnFe2O4 was developed successfully as a heterogeneous-Fenton catalyst for the degradation of Reactive Yellow 86 (RY 86) under UV light. The ZnFe2O4 was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM) and UV-diffuse reflectance spectroscopy (UV-DRS). FE-SEM reveals that the some of the particles sizes are in the range from 10 nm to 50 nm. The photocatalytic performance of ZnFe2O4 was evaluated by degradation of RY 86 dye solution under UV light. The degradation rate was highly influenced by pH, initial concentrations of H2O2 and catalyst concentration. The results indicated that ZnFe2O4 could be used as a photocatalyst for treatment of industrial coloured wastewater. The catalyst was reused for five consecutive runs without significant change in its activity. Moreover, the antibacterial effects were investigated.

Open access