Search Results

You are looking at 1 - 6 of 6 items for

  • Keyword: smoothed particle hydrodynamics x
Clear All Modify Search
Open access

Łukasz Bohdal

Abstract

In this paper, the applications of mesh-free SPH (Smoothed Particle Hydrodynamics) continuum method to the simulation and analysis of trimming process is presented. In dealing with shearing simulations for example of blanking, piercing or slitting, existing literatures apply finite element method (FEM) to analysis of this processes. Presented in this work approach and its application to trimming of aluminum autobody sheet allows for a complex analysis of physical phenomena occurring during the process without significant deterioration in the quality of the finite element mesh during large deformation. This allows for accurate representation of the loss of cohesion of the material under the influence of cutting tools. An analysis of state of stress, strain and fracture mechanisms of the material is presented. In experimental studies, an advanced vision-based technology based on digital image correlation (DIC) for monitoring the cutting process is used.

Open access

A. Najafi-Jilani and A. Rezaie-Mazyak

ABSTRACT

In this work, the movement pattern of a floating breakwater is numerically analyzed using Smoothed Particle Hydrodynamic (SPH) method as a Lagrangian scheme. At the seaside, the regular incident waves with varying height and period were considered as the dynamic free surface boundary conditions. The smooth and impermeable beach slope was defined as the bottom boundary condition. The effects of various boundary conditions such as incident wave characteristics, beach slope, and water depth on the movement of the floating body were studied. The numerical results are in good agreement with the available experimental data in the literature The results of the movement of the floating body were used to determine the transmitted wave height at the corresponding boundary conditions

Open access

Ryszard Staroszczyk

Abstract

In this paper the problem of transient gravitational wave propagation in a viscous incompressible fluid is considered, with a focus on flows with fast-moving free surfaces. The governing equations of the problem are solved by the smoothed particle hydrodynamics method (SPH). In order to impose the incompressibility constraint on the fluid motion, the so-called projection method is applied in which the discrete SPH equations are integrated in time by using a fractional-step technique. Numerical performance of the proposed model has been assessed by comparing its results with experimental data and with results obtained by a standard (weakly compressible) version of the SPH approach. For this purpose, a plane dam-break flow problem is simulated, in order to investigate the formation and propagation of a wave generated by a sudden collapse of a water column initially contained in a rectangular tank, as well as the impact of such a wave on a rigid vertical wall. The results of simulations show the evolution of the free surface of water, the variation of velocity and pressure fields in the fluid, and the time history of pressures exerted by an impacting wave on a wall.

Open access

Arman Pazouki, Radu Serban and Dan Negrut

Abstract

This work outlines a unified multi-threaded, multi-scale High Performance Computing (HPC) approach for the direct numerical simulation of Fluid-Solid Interaction (FSI) problems. The simulation algorithm relies on the extended Smoothed Particle Hydrodynamics (XSPH) method, which approaches the fluid flow in a La-grangian framework consistent with the Lagrangian tracking of the solid phase. A general 3D rigid body dynamics and an Absolute Nodal Coordinate Formulation (ANCF) are implemented to model rigid and flexible multibody dynamics. The two-way coupling of the fluid and solid phases is supported through use of Boundary Condition Enforcing (BCE) markers that capture the fluid-solid coupling forces by enforcing a no-slip boundary condition. The solid-solid short range interaction, which has a crucial impact on the small-scale behavior of fluid-solid mixtures, is resolved via a lubrication force model. The collective system states are integrated in time using an explicit, multi-rate scheme. To alleviate the heavy computational load, the overall algorithm leverages parallel computing on Graphics Processing Unit (GPU) cards. Performance and scaling analysis are provided for simulations scenarios involving one or multiple phases with up to tens of thousands of solid objects. The software implementation of the approach, called Chrono:Fluid, is part of the Chrono project and available as an open-source software.

Open access

Łukasz Bohdal, Katarzyna Tandecka and Paweł Kałduński

Abstract

Mechanical cutting allows separating of sheet material at low cost and therefore remains the most popular way to produce laminations for electrical machines and transformers. However, recent investigations revealed the deteriorating effect of cutting on the magnetic properties of the material close to the cut edge. The deformations generate elastic stresses in zones adjacent to the area of plastically deformed and strongly affect the magnetic properties. The knowledge about residual stresses is necessary in designing the process. This paper presents the new apprach of modeling residual stresses induced in shear slitting of grain oriented electrical steel using mesh-free method. The applications of SPH (Smoothed Particle Hydrodynamics) methodology to the simulation and analysis of 3D shear slitting process is presented. In experimental studies, an advanced vision-based technology based on digital image correlation (DIC) for monitoring the cutting process is used.

Open access

Ryszard Staroszczyk

Abstract

The paper is concerned with the problem of sea-ice pack motion and deformation under the action of wind and water currents. Differential equations describing the dynamics of ice, with its very distinct mateFfigrial responses in converging and diverging flows, express the mass and linear momentum balances on the horizontal plane (the free surface of the ocean). These equations are solved by the fully Lagrangian method of smoothed particle hydrodynamics (SPH). Assuming that the ice behaviour can be approximated by a non-linearly viscous rheology, the proposed SPH model has been used to simulate the evolution of a sea-ice pack driven by wind drag stresses. The results of numerical simulations illustrate the evolution of an ice pack, including variations in ice thickness and ice area fraction in space and time. The effects of different initial ice pack configurations and of different conditions assumed at the coast-ice interface are examined. In particular, the SPH model is applied to a pack flow driven by a vortex wind to demonstrate how well the Lagrangian formulation can capture large deformations and displacements of sea ice.