Search Results

You are looking at 1 - 6 of 6 items for

  • Keyword: rectification x
Clear All Modify Search
Open access

Paweł Peczyński and Bartosz Ostrowski

Abstract

The article describes a technique developed for identification of extrinsic parameters of a stereovision camera system for the purpose of image rectification without the use of reference calibration objects. The goal of the presented algorithm is the determination of the mutual position of cameras, under the assumption that they can be modeled by pinhole cameras, are separated by a fixed distance and are moving through a stationary scene. The developed method was verified experimentally on image sequences of a scene with a known structure.

Open access

Lidia Saluto, David Jou and Maria Stella Mongiovì

Abstract

We consider heat rectification in radial flows of turbulent helium II, where heat flux is not described by Fourier's law, but by a more general law. This is different from previous analyses of heat rectification, based on such law. In our simplified analysis we show that the coupling between heat flux and the gradient of vortex line density plays a decisive role in such rectification. Such rectification will be low at low and high values of the heat rate, but it may exhibit a very high value at an intermediate value of the heat rate. In particular, for a given range of values for the incoming heat ow, the outgoing heat flow corresponding to the exchange of internal and external temperatures would be very small. This would imply difficulties in heat removal in a given range of temperature gradients.

Open access

Yuan Dong

Abstract

The thermal diode is the fundamental device for phononics. There are various mechanisms for thermal rectification, e.g. different temperature dependent thermal conductivity of two ends, asymmetric interfacial resistance, and nonlocal behavior of phonon transport in asymmetric structures. The phonon hydrodynamics and thermomass theory treat the heat conduction in a fluidic viewpoint. The phonon gas flowing through the media is characterized by the balance equation of momentum, like the Navier-Stokes equation for fluid mechanics. Generalized heat conduction law thereby contains the spatial acceleration (convection) term and the viscous (Laplacian) term. The viscous term predicts the size dependent thermal conductivity. Rectification appears due to the MFP supersession of phonons. The convection term also predicts rectification because of the inertia effect, like a gas passing through a nozzle or diffuser.

Open access

Oliver Pabst

Abstract

It has been demonstrated before that human skin can be modeled as a memristor (memory resistor). Here we realize a memristor bridge by applying two voltages of opposite signs at two different skin sites. By this setup it is possible to use human skin as a frequency doubler and half-wave rectifier which is an application of the non-linear electrical properties of human skin. The corresponding electrical measurements are non-linear since these are affected by the applied stimulus itself.

Open access

Daria Filipiak and Waldemar Kamiński

Abstract

Electronic tacheometers are currently the standard instruments used in geodetic work, including also geodetic engineering measurements. The main advantage connected with this equipment is among others high accuracy of the measurement and thus high accuracy of the final determinations represented for example by the points’ coordinates. One of many applications of the tacheometers is the measurement of crane rail axes. This measurement is based on polar method and it allows to get the spatial coordinates of points in 3D local system. The standard technology of measurement of crane rail axes and development of its calculations’ results is well-known and widely presented in the subject literature. At the same time new methods of observations results evaluation are developing.

Some new proposals for the development of measurement results were already presented in (Kamiński, 2013).

This paper is a generalisation of the paper quoted above. The authors developed the concept which was presented there by a proposal for determining rectification corrections for semi gantry crane rail axes. To carried out the task, the parametric method with conditions on parameters was used. Moreover the practical tests on simulated measurement results were conducted. The results obtained from alignment confirmed the theoretical assumptions.

Despite the fact that analyses were carried out only on the simulated data, it is already possible to say that presented method for determination of rectification corrections for crane rail axes can be used for development of the observations from real measurement.

Open access

Daria Filipiak – Kowszyk and Waldemar Kamiński

Abstract

As the devices designed to transport materials, the overhead cranes should meet certain geometric requirements for their operation to be safe. The presently available geodetic equipment, in particular total stations, provides opportunities for precise 3D measurements of coordinates of the controlled points. These coordinates make a basis for correcting the height of crane runway axes. The paper presents a method to calculate position corrections for the crane rail axes in both vertical and horizontal direction, and indicates that these results can find much wider application. Among other goals, the observations of this type, along with the Kalman filtration method, can be used to predict vertical displacements of the crane rail axes. The object of practical considerations in the paper is a crane working in the area with unfavourable geotechnical conditions and the settling limits attributed to this crane and location area in the technical design. The sample practical application has confirmed the validity of the use of the proposed solution for evaluating the operational safety of the crane. Although the tests were performed for the gantry crane, the proposed solution is believed to be applicable for other types of overhead cranes.