Search Results

1 - 2 of 2 items :

  • Keyword: Stir casting x
  • Fundamentals of Mechanical Engineering x
  • Engineering x
Clear All Modify Search
Tribological Behavior of AA7050-ZrSiO4 Composites Synthesized by Stir Casting Technique


This research made an attempt to synthesize aluminum metal matrix composites through stir casting technique. The matrix material chosen in this study was AA7050 and the reinforcement material was ZrSiO4. The composites AA7050, AA7050-10%ZrSiO4, and AA7050-15%ZrSiO4 were used. The wear behavior of the aluminum matrix composites was investigated by using pin-on-disc tribometer. The advanced material has substantial development in tribological behavior when the reinforcement percentage is increased. From the experimental results, it was confirmed that sliding distance of 1200 m, applied load of 3 N and sliding speed of 2 m/s result in minimum wear loss and coefficient of friction, while adding 10%ZrSiO4 to the AA7050.

Open access
Experimental Evaluation of Al-Zn-Al2O3 Composite on Piston Analysis by CAE Tools


Today’s automotive designers and material specialists regard lighter vehicles for less fuel consumption (economy and ecology) and higher safety to passengers. Metal matrix composites have been a large area of interest. Aluminium composite is potentially applied in automotive and aerospace industries, because it has a superior strength to weight ratio and is a light weight metal with high temperature resistance. Composites containing hard oxides and ceramics (such as alumina) are preferred for high wear resistance along with increased hardness. In this work, alumina and zinc are reinforced in Al-LM25 alloy through stir casting process, where alumina is varied 6% and 12% in Al-5%Zn. Various mechanical analyses were conducted and the effect of wear with different percentage of alumina reinforcement was studied. The resulting properties are imported in a piston, modelled using solid works, and analysed in ANSYS work bench. Imparting this new material for pistons could introduce deep design and improvements in engine operation of a vehicle.

Open access