Search Results

You are looking at 1 - 10 of 11 items for :

  • Keyword: FEM x
  • Atmospheric Science and Climatology x
Clear All Modify Search
Open access

Grzegorz Porembski and Janusz Kozak

Simulation of damage process of containership's side structure due to collision with a rock

This paper presents methods and results of a simplified numerical simulation of collision process of containership's side structure and a rock. Analysis of results of the modeling makes it possible to draw conclusions as to a character of the event as well as to estimate area and depth of damage caused by the penetrating rock, in order to select geometry of a filler and impermeable layer of 2nd protection barrier.

Open access

Jędrzej Żywicki, Paweł Dymarski, Ewelina Ciba and Czesław Dymarski

Abstract

The article presents the calculation and design stages of the TLP platform serving as a supporting construction of a 6 MW offshore wind turbine. This platform is designed to anchor at sea at a depth of 60 m. The authors presented the method of parameterization and optimization of the hull geometry. For the two selected geometry variants, the load and motion calculations of the platform subjected to wind, wave and current under 50-year storm conditions were performed. The maximum load on the structure was determined in these extreme storm conditions. For these loads, the MES calculation of the designed platform was performed for the selected variant. Authors have presented a method for calculating maximum wind, wave and current stresses on the structure during the worst storm in the past 50 years. For these loads the MES endurance calculations of the designed platform were made. Based on the results of these calculations, the required structural changes and recalculations have been made in succession to the structural design of the platform, which meets the design requirements and has the required ad hoc strength. The article contains stress analysis in „difficult“ nodes of constructions and discusses ways of solving their problems. The work is part of the WIND-TU-PLA project from the NCBR Research Agreement (Agreement No. MARTECII / 1/2014).

Open access

Bartłomiej Żyliński

Finite element local analysis of wave slamming on offshore structure

Offshore platforms are exposed to waves slamming event. Waves hitting the columns with a high velocity are in many cases the design criteria for column structure. This paper focuses on the analysis of wave slamming on floating platform column. Significant for wave slamming pressure is load history, which is usually based on model test. Wave slamming loads were defined on all four walls of column to assess the worst place. For south wall of column three positions exposed to slamming loads between elevation 21.000 (SWL) and elevation 35.500 were checked. Dynamic analysis has been performed with nonlinear FEM program ABAQUS/explicit. The steel was modeled as an elastic-plastic material with isotropic hardening.

Open access

Mariusz Żółtowski, Bogdan Żółtowski and Leonel Castaneda

Abstract

This paper presents a methodology to evaluate the technical state of a Francis turbine by shaft rotor dynamic simulation. There are several rotor dynamic criteria that define the technical state of a turbo-machine. To feed the shaft rotor dynamic model this delivers the required information to accomplish the technical assessment. The numerical rotor dynamic model uses as input, the field forces obtained by the fluid-solid interaction analysis undertaken over the blades of the runner.

The rotor dynamic numerical simulations allow to determinate the record-in-time of the displacements of any point along the shaft. This information is relevant for diagnosis tasks, because it is possible to decompose it spectrally and to estimate the severity of the vibrations. Comparing the results of the numerical model against those obtained from machines that operates under normal conditions, it is possible to determinate the technical state of the turbo-machine. This allows studying the stability of the turbine working on several operation ranges.

A Francis turbine is a very complex machine that involves many physical phenomena of different nature. In this way, the hydraulic input forces needed by the rotor dynamic model should not be assumed but calculated directly from the fluid interaction over the turbine structure.

Open access

C. Dymarski, P. Dymarski and D.J. Żywicki

Abstract

The support structure being the object of the analysis presented in the article is Tripod. According to the adopted assumptions, it is a foundation gravitationally set in the water region of 60 m in depth, not fixed to the seabed, which can be used for installing a 7MW wind turbine. Due to the lack of substantial information on designing and strength calculations of such types of structures in the world literature, authors have made an attempt to solve this problem within the framework of the abovementioned project. In the performed calculations all basic loads acting on the structure were taken into account, including: the self mass of the structure, the masses of the ballast, the tower and the turbine, as well as hydrostatic forces, and aero- and hydrodynamic forces acting on the entire object in extreme operating conditions.

Open access

Artur Olszewski, Michał Wodtke and Artur Wójcikowski

Abstract

The article presents the analysis, project, and experimental examination of an original rigid riser for Coil Tubing Pipes. The principle of riser operation is based on the use of friction forces. The research included the FEM analysis of the designed riser, calculations of the required bolt tensions, and checking the effect of the clamping force on stress distribution in the pipeline. The results of computer simulation were verified on a specially designed test rig. The described riser design was implemented on the LOTOS Petrobaltic platform, thus eliminating the need for purchase and installation of expensive elastic risers.

Open access

Michał Wodtke, Artur Olszewski and Artur Wójcikowski

Abstract

The article describes the result of theoretical research aimed at assessing the loads and operating conditions of a Coiled Tubing pipeline injecting water, suspended to the mining platform of Lotos Petrobaltic. For this purpose, appropriate calculation models have been developed using the Finite Element Method (FEM), taking into account the nature of the analyzed object and its loads. The analyzes were carried out for two pipes (previously operated and newly proposed) differing in geometrical and strength parameters. The research was carried out for selected directions of load on the pipeline (originating from sea waves) and various variants of attaching the suspended pipeline to the mining platform.

Open access

Karol Niklas and Janusz Kozak

Abstract

Like other means of transport, merchant ships face the problem of increasing requirements concerning the environment protection, which, among other issues, implies the reduction of fuel consumption by the ship. Here, the conventional approach which consists in making use of higher strength steels to decrease the mass of the ship hull can be complemented by the use of new steel structures of sandwich panel type. However, the lack of knowledge and experience concerning, among other issues, fatigue strength assessment of thin-walled sandwich structures makes their use limited. Untypical welds imply the need for individual approach to the fatigue analysis. The article presents the effect of numerical FEM modelling with the aid of two-dimensional (2D) and three-dimensional (3D) elements on the results of strain and stress distributions in the areas of toe and root notches of the analysed laser weld. The presented results of computer simulation reveal that modelling of strain and stress states in 2D (instead of full 3D) affects only the results in close vicinity of the notch, and the observed differences rapidly disappear at a distance of 0.05 mm from the bottom of the notch. The obtained results confirm the possibility of use of numerically effective 2D strain and stress state models for analysing the fatigue strength of laser weld according to local approach.

Open access

Hassan Ghassemi, Morteza Ghassabzadeh and Maryam Gh. Saryazdi

ABSTRACT

This paper studies the effect of material on the hydro-elastic behaviour. The geometry of flexible propeller changes due to hydrodynamic and inertial forces acting on the propeller. By using prepared software (called HYDRO-BEM and ELASTIC-FEM) the hydro-elastic features of the propeller made of various materials are analyzed. In the software the hybrid boundary element and finite element methods are used. First, the load acting on the propeller is determined by using the BEM and deformed propeller geometry is then obtained by the FEM. In the next step, the load on the deformed propeller is determined by the BEM and a new shape is obtained. The iterative procedure is repeated till the blade deflection and hydrodynamic characteristics (thrust, torque and efficiency) of the propeller become converged. Four different materials are examined. It is concluded that the hydro-elastic behaviour of the composite propeller is strongly affected by its flexibility due to light material.

Open access

Heba W. Leheta, Ahmed M. H. Elhewy and Helmy A. Younes

Abstract

Fatigue failure avoidance is a goal that can be achieved only if the fatigue design is an integral part of the original design program. The purpose of fatigue design is to ensure that the structure has adequate fatigue life. Calculated fatigue life can form the basis for meaningful and efficient inspection programs during fabrication and throughout the life of the ship. The main objective of this paper is to develop an add-on program for the analysis of fatigue crack growth in ship structural details. The developed program will be an add-on script in a pre-existing package. A crack propagation in a tanker side connection is analyzed by using the developed program based on linear elastic fracture mechanics (LEFM) and finite element method (FEM). The basic idea of the developed application is that a finite element model of this side connection will be first analyzed by using ABAQUS and from the results of this analysis the location of the highest stresses will be revealed. At this location, an initial crack will be introduced to the finite element model and from the results of the new crack model the direction of the crack propagation and the values of the stress intensity factors, will be known. By using the calculated direction of propagation a new segment will be added to the crack and then the model is analyzed again. The last step will be repeated until the calculated stress intensity factors reach the critical value.