Search Results

You are looking at 1 - 4 of 4 items for :

  • Keyword: FEM x
  • Process Engineering and Industrial Engineering x
Clear All Modify Search
Open access

Vasile Nastasescu, Ghita Barsan and Oana Mocian

Abstract

The foam materials, by construction and by characteristic properties (low density, large deformations, great flexibility, Poisson ratio practically zero etc.), are widely used in many and various domains. The numerical simulation of the foam material behavior raises some difficulties, which can be impassable under certain circumstances. This paper presents some of our researching results in numerical modeling of foam materials, which can be very useful for those interested in numerical modeling of the foam materials. Numerical modeling used by the authors is based on the finite element method (FEM) and on the element-free Galerkin (EFG) method. The results are presented in a comparatively way and they also present how some usually running errors can be avoided. The conclusions and the results are considered by the authors very useful in modeling of the foam materials and in choosing of the most fitted method too.

Open access

Stefan Berczyński, Daniel Grochała and Zenon Grządziel

Abstract

The article deals with computer-based modeling of burnishing a surface previously milled with a spherical cutter. This method of milling leaves traces, mainly asperities caused by the cutting crossfeed and cutter diameter. The burnishing process - surface plastic treatment - is accompanied by phenomena that take place right in the burnishing ball-milled surface contact zone. The authors present the method for preparing a finite element model and the methodology of tests for the assessment of height parameters of a surface geometrical structure (SGS). In the physical model the workpieces had a cuboidal shape and these dimensions: (width × height × length) 2×1×4.5 mm. As in the process of burnishing a cuboidal workpiece is affected by plastic deformations, the nonlinearities of the milled item were taken into account. The physical model of the process assumed that the burnishing ball would be rolled perpendicularly to milling cutter linear traces. The model tests included the application of three different burnishing forces: 250 N, 500 N and 1000 N. The process modeling featured the contact and pressing of a ball into the workpiece surface till the desired force was attained, then the burnishing ball was rolled along the surface section of 2 mm, and the burnishing force was gradually reduced till the ball left the contact zone. While rolling, the burnishing ball turned by a 23° angle. The cumulative diagrams depict plastic deformations of the modeled surfaces after milling and burnishing with defined force values. The roughness of idealized milled surface was calculated for the physical model under consideration, i.e. in an elementary section between profile peaks spaced at intervals of crossfeed passes, where the milling feed fwm = 0.5 mm. Also, asperities after burnishing were calculated for the same section. The differences of the obtained values fall below 20% of mean values recorded during empirical experiments. The adopted simplification in after-milling SGS modeling enables substantial acceleration of the computing process. There is a visible reduction of the Ra parameter value for milled and burnished surfaces as the burnishing force rises. The tests determined an optimal burnishing force at a level of 500 N (lowest Ra = 0.24 μm). Further increase in the value of burnishing force turned out not to affect the surface roughness, which is consistent with the results obtained from experimental studies.

Open access

Iwona Wstawska

Abstract

The main objective of this work is the numerical analysis (FE analysis) of stability of three-layer beams with metal foam core (alumina foam core). The beams were subjected to pure bending. The analysis of the local buckling was performed. Furthermore, the influence of geometric parameters of the beam and material properties of the core (linear and non-linear model) on critical loads values and buckling shape were also investigated. The calculations were made on a family of beams with different mechanical properties of the core (elastic and elastic-plastic material). In addition, the influence of geometric imperfections on deflection and normal stress values of the core and the faces has been evaluated.

Open access

Claudia Girjob

Abstract

The present paper aims to study the forming behavior of lightweight metallic materials in order to reduce the total weight of the vehicles without affecting their performances. For the theoretical and experimental researches, among the lightweight metallic materials, the AZ31B magnesium alloy has been chosen, a representative alloy for the magnesium-zinc-aluminium alloy system. The results of the theoretical researches, made on finite elements models, were validated by means of experimental researches consisting of tensile tests and forming limit curves determination tests.