Search Results

You are looking at 1 - 3 of 3 items for :

  • Keyword: FEM x
Clear All Modify Search
Open access

Vasile Nastasescu, Ghita Barsan and Oana Mocian

Abstract

The foam materials, by construction and by characteristic properties (low density, large deformations, great flexibility, Poisson ratio practically zero etc.), are widely used in many and various domains. The numerical simulation of the foam material behavior raises some difficulties, which can be impassable under certain circumstances. This paper presents some of our researching results in numerical modeling of foam materials, which can be very useful for those interested in numerical modeling of the foam materials. Numerical modeling used by the authors is based on the finite element method (FEM) and on the element-free Galerkin (EFG) method. The results are presented in a comparatively way and they also present how some usually running errors can be avoided. The conclusions and the results are considered by the authors very useful in modeling of the foam materials and in choosing of the most fitted method too.

Open access

Iwona Wstawska

Abstract

The main objective of this work is the numerical analysis (FE analysis) of stability of three-layer beams with metal foam core (alumina foam core). The beams were subjected to pure bending. The analysis of the local buckling was performed. Furthermore, the influence of geometric parameters of the beam and material properties of the core (linear and non-linear model) on critical loads values and buckling shape were also investigated. The calculations were made on a family of beams with different mechanical properties of the core (elastic and elastic-plastic material). In addition, the influence of geometric imperfections on deflection and normal stress values of the core and the faces has been evaluated.

Open access

Claudia Girjob

Abstract

The present paper aims to study the forming behavior of lightweight metallic materials in order to reduce the total weight of the vehicles without affecting their performances. For the theoretical and experimental researches, among the lightweight metallic materials, the AZ31B magnesium alloy has been chosen, a representative alloy for the magnesium-zinc-aluminium alloy system. The results of the theoretical researches, made on finite elements models, were validated by means of experimental researches consisting of tensile tests and forming limit curves determination tests.